# Reachability Analysis Using Octagons 

Andrew N. Fisher and Chris J. Myers

## Department of Electrical and Computer Engineering University of Utah

FAC 2014
July 9, 2014

## Digitally Intensive Analog Circuits

- Digitally intensive analog circuits attempt to replace analog components with digital ones whenever possible.

- Result is optimized power efficiency and performance as well as improved robustness to process variability.
- These circuits though further complicate the verification problem.


## Simulation-Based Verification

- Digital verification typically uses switch or RTL-level simulations.
- AMS verification uses detailed transistor-level (SPICE) simulations.
- SPICE simulation of a PLL can take weeks or even months.
- Long simulation time makes system-level simulation difficult.
- Functional bugs can be missed resulting in catastrophic failures.


## Analog Verification



If the digital designers did verification the way analog designers do verification, no chip would ever tape out. (DACezine, January 2008)

Sandipan Bhanot CEO of Knowlent

## Model Checking

- Model checking uses non-determinism and state exploration to formally verify designs over all possible behaviors.
- Has had tremendous success for verifying of both digital hardware and software systems (now routinely used at Intel, IBM, Microsoft, etc.).
- For AMS circuits, it is a promising mechanism to validate designs in the face of noise and uncertain parameters and initial conditions.
- AMS verification is complicated by the need to:
- Construct abstract formal models of the AMS circuits.
- Specify formal properties that are to be verified.
- Represent continuous variables efficiently (voltages, currents, and time).


## Model Checking

- Model checking uses non-determinism and state exploration to formally verify designs over all possible behaviors.
- Has had tremendous success for verifying of both digital hardware and software systems (now routinely used at Intel, IBM, Microsoft, etc.).
- For AMS circuits, it is a promising mechanism to validate designs in the face of noise and uncertain parameters and initial conditions.
- AMS verification is complicated by the need to:
- Construct abstract formal models of the AMS circuits. (FAC 2011)
- Specify formal properties that are to be verified. (FAC 2013)
- Represent continuous variables efficiently (voltages, currents, and time).


## Zones

- Used for formal verification of timed automata and time(d) Petri nets.
- Simple geometric polyhedra formed by the intersection of hyper-planes representing inequalities of the form $y-x \leq c$.
- Implies polyhedra with only $0^{\circ}, 90^{\circ}$, and positive $45^{\circ}$ angles.
- For timed systems, all variables evolve at a rate of 1 , and zone evolves along a positive $45^{\circ}$ angle.
- Algorithms to restrict, project, and advance time are fast and simple.
- Can use Floyd's all pairs shortest-path algorithm to construct a canonical maximally tight representation.
- Conveniently represented using a difference bound matrix (DBM).


## Zones



$$
\begin{aligned}
y-t 0 & \leq M_{y} \\
x-t 0 & \leq M_{x} \\
t 0-x & \leq-m_{x} \\
t 0-y & \leq-m_{y} \\
y-x & \leq b_{1} \\
x-y & \leq-b_{2}
\end{aligned}
$$

$$
\left.\begin{array}{c} 
\\
t 0 \\
x \\
y
\end{array} \begin{array}{ccc}
t 0 & x & y \\
0 & M_{x} & M_{y} \\
-m_{x} & 0 & b_{1} \\
-m_{y} & -b_{2} & 0
\end{array}\right)
$$

## Zones



$$
\begin{aligned}
& y-t 0 \leq 3 \\
& x-t 0 \leq 3 \\
& t 0-x \leq 0 \\
& t 0-y \leq 0 \\
& y-x \leq 1 \\
& x-y \leq 1 \\
& \text { t0 } x \text { y } \\
& \begin{array}{l}
t 0 \\
x \\
y
\end{array}\left(\begin{array}{lll}
0 & 3 & 3 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

## Zone Warping

- To verify AMS circuits, need variables that evolve at non-unity rates.
- Zones can be used with a variable substitution.
- Replace variable $v$ with non-zero rate $r$ with a variable $\frac{v}{r}$.
- The new variable $\frac{v}{r}$ evolves at a rate of 1 .
- Resultant polyhedra is no longer a zone.
- Warping creates the smallest zone that contains it.


## Positive Zone Warping



## Positive Zone Warping



## Positive Zone Warping



## Negative Zone Warping



## Negative Zone Warping



## Negative Zone Warping



## Negative Zone Warping: False Negative



## Octagons

- Extension of zones that allow negative $45^{\circ}$ degree angles.



## Octagon DBM

- Can be represented using a DBM (Mine, 2001) and manipulated with efficient algorithms.


$$
\begin{array}{ll}
x^{+}-x^{-} \leq 2 M_{x} & x^{+} \\
x^{-}-x^{+} \leq-2 m_{x} & x^{-} \\
y^{+}-y^{-} \leq 2 M_{y} & y^{+} \\
y^{-}-y^{-} \leq-2 m_{y} & y^{-}
\end{array}\left(\begin{array}{cccc}
0 & -2 m_{x}^{-} & y^{+} & y^{-} \\
2 M_{x} & 0 & & \\
& & 0 & -2 m_{y} \\
& & 2 M_{y} & 0
\end{array}\right)
$$

## Octagon DBM

- Can be represented using a DBM (Mine, 2001) and manipulated with efficient algorithms.


$$
\begin{aligned}
& y^{+}-x^{+} \leq b_{1} \\
& x^{-}-y^{-} \leq b_{1} \\
& y^{-}-x^{-} \leq-b_{2} \\
& x^{+}-y^{+} \leq-b_{2} \\
& y^{+}-x^{-} \leq b_{3} \\
& x^{+}-y^{-} \leq b_{3}
\end{aligned}
$$

$$
x^{+} \quad x^{-} \quad y^{+} \quad y^{-}
$$

$$
\begin{array}{ll}
y^{-}-x^{+} \leq-b_{4} & x^{+} \\
x^{-}-y^{+} \leq-b_{4} & y^{+}\left(\begin{array}{cccc}
0 & -2 m_{x} & b_{1} & -b_{4} \\
2 M_{x} & 0 & b_{3} & -b_{2} \\
-b_{2} & -b_{4} & 0 & -2 m_{y} \\
b_{3} & b_{1} & 2 M_{y} & 0
\end{array}\right) .
\end{array}
$$

## Reachability Analysis Using Octagons

- Utilized for software checking, and efficient restriction, projection, and constraint tightening algorithms have been developed.
- New algorithms are needed to add new continuous variables, advance time, and warp the octagon.


## Adding Variables to Octagons

- Adding new continuous variables and clocks is simply a matter of re-interpreting the algorithms for zones in the language for octagons.
- When adding a continuous variable $v$ with rate $r$, the maximum and minimum values for $v$ are divided by $r$ and added to the DBM (after multiplying by 2 ).
- Relational entries are set to infinity, indicating no relationship.


## Octagon Time Advancement

- Extend the octagon along the $45^{\circ}$ lines.
- For zones, to advance time, simply set the upper bounds for all the variables to the maximum allowed value before an event occurs.
- For octagons, $-45^{\circ}$ line slicing the upper right hand corner has a limiting effect on the upper bounds of the two variables involved.
- Entries associated with inequalities $y+x \leq c$ must also be set to their maximum allowed value in relation to the maximums of $x$ and $y$.




## Octagon Warping

- Again replace every variable $v$ by $\frac{v}{r}$ where $r$ is the rate of $v$.
- Replace resulting polyhedra with smallest octagon that contains it.
- Accomplished by using a few algebraic equations that determine where the new axis intercepts are in terms of the old intercept values.



## Octagon Example



## Comparison with Zones



## Comparison with Zones



## Comparison with Zones



## Comparison with Zones



## False Negatives

- Octagons do not eliminate the possibility of false negatives even in the case where rates are only $\pm 1$.
- Time advancement also introduces a degree of over-approximation, related to the negative $45^{\circ}$ lines.
- Advancement in three dimensions of one of these negative $45^{\circ}$ line segments belongs to a plane of the form $a x+b y+c z=d$.
- The bounding hyper-planes are of the form $\pm v_{i} \pm v_{j} \leq c$ and not able to capture this plane produced by advancing time.


## False Negative Example



False Negative Example


## LEMA: LPN Embedded Mixed-Signal Analyzer



Fisher et al., MWSCAS (2014)

## Acknowledgements



Satish Batchu (Qualcomm)


Dhanashree Kulkarni (Intel)


Andrew Fisher (Utah)


Scott Little (Intel)


Kevin Jones (Aberdeen)


David Walter (Virginia State)

Supported by SRC Contracts 2002-TJ-1024, 2005-TJ-1357, 2008-TJ-1851, NSF Grant CCF-1117515, and by Intel Corporation.

## Octagon DBM

$$
\begin{aligned}
& t 0^{+} \quad t 0^{-} \quad x^{+} \quad x^{-} \quad y^{+} \quad y^{-} \\
& \begin{array}{l}
t 0^{+} \\
t 0^{-} \\
x^{+} \\
x^{-} \\
y^{+} \\
y^{-}
\end{array}\left(\begin{array}{llllll}
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 2 & 0 & 2 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 2 & 1 & 2 & 0
\end{array}\right)
\end{aligned}
$$

## Octagon DBM

$$
\begin{aligned}
& t 0^{+} \quad t 0^{-} \quad x^{+} \quad x^{-} \quad y^{+} \quad y^{-} \\
& \begin{array}{l}
t 0^{+} \\
t 0^{-} \\
x^{+} \\
x^{-} \\
y^{+} \\
y^{-}
\end{array}\left(\begin{array}{cccccc}
0 & 0 & 1 & 0 & 1 & 0 \\
4 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 10 & 0 & 2 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 2 & 1 & 14 & 0
\end{array}\right)
\end{aligned}
$$

## Octagon DBM

$$
\begin{aligned}
& t 0^{+} \quad t 0^{-} \quad x^{+} \quad x^{-} \quad y^{+} \quad y^{-} \\
& \begin{array}{l}
t 0^{+} \\
t 0^{-} \\
x^{+} \\
x^{-} \\
y^{+} \\
y^{-}
\end{array}\left(\begin{array}{cccccc}
0 & 0 & 1 & 0 & 1 & 0 \\
4 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 10 & 0 & \infty & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & \infty & 1 & 14 & 0
\end{array}\right)
\end{aligned}
$$

## Octagon DBM

$$
\begin{aligned}
& \begin{array}{l}
t 0^{+} \\
t 0^{-} \\
x^{+} \\
x^{-} \\
y^{+} \\
y^{-}
\end{array}\left(\begin{array}{llllll}
0 & 0 & 1 & 0 & 1 & 0 \\
4 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 6 & 0 & 6 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 6 & 1 & 6 & 0
\end{array}\right)
\end{aligned}
$$

## Octagon DBM

$$
\begin{aligned}
& t 0^{+} \quad t 0^{-} \quad x^{+} \quad x^{-} \quad y^{+} \quad y^{-} \\
& \begin{array}{l}
t 0^{+} \\
t 0^{-} \\
x^{+} \\
x^{-} \\
y^{+} \\
y^{-}
\end{array}\left(\begin{array}{cccccc}
0 & 0 & 1 & 0 & 1 & 0 \\
4 & 0 & \infty & 0 & \infty & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\infty & 1 & 6 & 0 & 6 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
\infty & 1 & 6 & 1 & 6 & 0
\end{array}\right)
\end{aligned}
$$

## Octagon DBM

$$
\begin{aligned}
& \begin{array}{l}
t 0^{+} \\
t 0^{-} \\
x^{+} \\
x^{-} \\
y^{+} \\
y^{-}
\end{array}\left(\begin{array}{llllll}
0 & 0 & 1 & 0 & 1 & 0 \\
4 & 0 & 5 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
5 & 1 & 6 & 0 & 6 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
5 & 1 & 6 & 1 & 6 & 0
\end{array}\right)
\end{aligned}
$$

## Octagon DBM

$$
\begin{aligned}
& \begin{array}{l}
t 1^{+} \\
t 1^{-} \\
x^{+} \\
x^{-} \\
y^{+} \\
y^{-}
\end{array}\left(\begin{array}{llllll}
0 & 0 & 3 & 0 & 0 & 3 \\
0 & 0 & 3 & 0 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 1 \\
3 & 3 & 6 & 0 & 1 & 6 \\
3 & 3 & 6 & 1 & 0 & 6 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

## Octagon DBM

$$
\begin{aligned}
& \begin{array}{l}
t 1^{+} \\
t 1^{-} \\
x^{+} \\
x^{-} \\
y^{+} \\
y^{-}
\end{array}\left(\begin{array}{cccccc}
0 & 0 & 3 & 0 & 0 & 3 \\
2 & 0 & 3 & 0 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 1 \\
3 & 3 & 10 & 0 & 1 & 6 \\
3 & 3 & 6 & 1 & 0 & 6 \\
0 & 0 & 1 & 0 & 14 & 0
\end{array}\right)
\end{aligned}
$$

## Octagon DBM

$$
\begin{aligned}
& \begin{array}{l}
t 1^{+} \\
t 1^{-} \\
x^{+} \\
x^{-} \\
y^{+} \\
y^{-}
\end{array}\left(\begin{array}{cccccc}
0 & 0 & 3 & 0 & 0 & 3 \\
2 & 0 & \infty & 0 & \infty & 3 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\infty & 3 & 10 & 0 & 1 & 6 \\
3 & 3 & 6 & 1 & 0 & 6 \\
\infty & 0 & 1 & 0 & 14 & 0
\end{array}\right)
\end{aligned}
$$

## Octagon DBM

$$
\begin{aligned}
& \begin{array}{l}
t 1^{+} \\
t 1^{-} \\
x^{+} \\
x^{-} \\
y^{+} \\
y^{-}
\end{array}\left(\begin{array}{cccccc}
0 & 0 & 3 & 0 & 0 & 3 \\
2 & 0 & \infty & 0 & \infty & 3 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\infty & 3 & 10 & 0 & \infty & 6 \\
3 & 3 & 6 & 1 & 0 & 6 \\
\infty & 0 & \infty & 0 & 14 & 0
\end{array}\right)
\end{aligned}
$$

## Octagon DBM

$$
\begin{aligned}
& \begin{array}{l}
t 1^{+} \\
t 1^{-} \\
x^{+} \\
x^{-} \\
y^{+} \\
y^{-}
\end{array}\left(\begin{array}{cccccc}
0 & 0 & 3 & 0 & 0 & 3 \\
2 & 0 & \infty & 0 & \infty & 3 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\infty & 3 & 10 & 0 & 2 & 6 \\
3 & 3 & 6 & 1 & 0 & 6 \\
\infty & 0 & 2 & 0 & 14 & 0
\end{array}\right)
\end{aligned}
$$

## Octagon DBM

$$
\begin{aligned}
& \begin{array}{l}
t 1^{+} \\
t 1^{-} \\
x^{+} \\
x^{-} \\
y^{+} \\
y^{-}
\end{array}\left(\begin{array}{llllll}
0 & 0 & 3 & 0 & 0 & 3 \\
2 & 0 & 5 & 0 & 2 & 3 \\
0 & 0 & 0 & 0 & 0 & 1 \\
5 & 3 & 8 & 0 & 2 & 6 \\
3 & 3 & 6 & 1 & 0 & 6 \\
2 & 0 & 2 & 0 & 2 & 0
\end{array}\right)
\end{aligned}
$$

## Octagon DBM

$$
\begin{aligned}
& t 2^{+} \quad t 2^{-} \quad x^{+} \quad x^{-} \quad y^{+} \quad y^{-} \\
& \begin{array}{l}
t 2^{+} \\
t 2^{-} \\
x^{+} \\
x^{-} \\
y^{+} \\
y^{-}
\end{array}\left(\begin{array}{llllll}
0 & 0 & 4 & 0 & 3 & 1 \\
0 & 0 & 4 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
4 & 4 & 8 & 0 & 6 & 2 \\
1 & 1 & 2 & 0 & 0 & 2 \\
3 & 3 & 6 & 1 & 6 & 0
\end{array}\right)
\end{aligned}
$$

## Octagon DBM

$$
\begin{aligned}
& t 2^{+} \quad t 2^{-} \quad x^{+} \quad x^{-} \quad y^{+} \quad y^{-} \\
& \begin{array}{l}
t 2^{+} \\
t 2^{-} \\
x^{+} \\
x^{-} \\
y^{+} \\
y^{-}
\end{array}\left(\begin{array}{cccccc}
0 & 0 & 4 & 0 & 3 & 1 \\
2 & 0 & \infty & 0 & \infty & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\infty & 4 & 10 & 0 & 6 & 2 \\
1 & 1 & 2 & 0 & 0 & 2 \\
\infty & 3 & 6 & 1 & 14 & 0
\end{array}\right)
\end{aligned}
$$

## Octagon DBM

$$
\begin{aligned}
& t 2^{+} \quad t 2^{-} \quad x^{+} \quad x^{-} \quad y^{+} \quad y^{-} \\
& \begin{array}{l}
t 2^{+} \\
t 2^{-} \\
x^{+} \\
x^{-} \\
y^{+} \\
y^{-}
\end{array}\left(\begin{array}{cccccc}
0 & 0 & 4 & 0 & 3 & 1 \\
2 & 0 & \infty & 0 & \infty & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\infty & 4 & 10 & 0 & \infty & 2 \\
1 & 1 & 2 & 0 & 0 & 2 \\
\infty & 3 & \infty & 1 & 14 & 0
\end{array}\right)
\end{aligned}
$$

## Octagon DBM

$$
\begin{aligned}
& t 2^{+} \quad t 2^{-} \quad x^{+} \quad x^{-} \quad y^{+} \quad y^{-} \\
& \begin{array}{l}
t 2^{+} \\
t 2^{-} \\
x^{+} \\
x^{-} \\
y^{+} \\
y^{-}
\end{array}\left(\begin{array}{cccccc}
0 & 0 & 4 & 0 & 3 & 1 \\
2 & 0 & \infty & 0 & \infty & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\infty & 4 & 10 & 0 & 8 & 2 \\
1 & 1 & 2 & 0 & 0 & 2 \\
\infty & 3 & 8 & 1 & 14 & 0
\end{array}\right)
\end{aligned}
$$

## Octagon DBM

$$
\begin{aligned}
& t 2^{+} \quad t 2^{-} \quad x^{+} \quad x^{-} \quad y^{+} \quad y^{-} \\
& \begin{array}{l}
t 2^{+} \\
t 2^{-} \\
x^{+} \\
x^{-} \\
y^{+} \\
y^{-}
\end{array}\left(\begin{array}{cccccc}
0 & 0 & 4 & 0 & 3 & 1 \\
2 & 0 & 6 & 0 & 5 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
6 & 4 & 10 & 0 & 8 & 2 \\
1 & 1 & 2 & 0 & 0 & 2 \\
5 & 3 & 8 & 1 & 8 & 0
\end{array}\right)
\end{aligned}
$$

## Octagon DBM

$$
\begin{aligned}
& \begin{array}{l}
t 3^{+} \\
t 3^{-}
\end{array} x^{+} \quad x^{-} \quad y^{+} \quad y^{-}
\end{aligned}
$$

## Octagon DBM



## Octagon DBM

$$
\begin{aligned}
& t 3^{+} \quad t 3^{-} \quad x^{+} \quad x^{-} \quad y^{+} \quad y^{-} \\
& \begin{array}{l}
t 3^{+} \\
t 3^{-} \\
x^{+} \\
x^{-} \\
y^{+} \\
y^{-}
\end{array}\left(\begin{array}{cccccc}
0 & 0 & 5 & -5 & 6 & -3 \\
0 & 0 & 5 & -5 & 6 & -3 \\
-5 & -5 & 0 & -10 & 1 & -8 \\
5 & 5 & 10 & 0 & 11 & 2 \\
-3 & -3 & 2 & -8 & 0 & 2 \\
3 & 3 & 11 & 1 & 14 & 0
\end{array}\right)
\end{aligned}
$$

## Octagon DBM

$$
\begin{aligned}
& t 0^{+} \quad t 0^{-} \quad x^{+} \quad x^{-} \quad y^{+} \quad y^{-} \\
& \begin{array}{l}
t 0^{+} \\
t 0^{-} \\
x^{+} \\
x^{-} \\
y^{+} \\
y^{-}
\end{array}\left(\begin{array}{llllll}
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 2 & 0 & 2 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 2 & 1 & 2 & 0
\end{array}\right)
\end{aligned}
$$

