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Abstract—Model abstraction of transistor-level circuits, while
preserving an accurate behavior, is still an open problem. In
this paper an approach is presented that automatically generates
a hybrid automaton (HA) with linear states. The resulting HA is
used for reachability analysis. Each of the locations of the HA is
modeled with a system matrix described as a matrix zonotope or
interval matrix. This leads to an acceptable over approximation,
but guarantees that the system behavior is covered. The approach
starts with a netlist at transistor level with full SPICE accuracy
and ends at the system level description of the circuit. To illustrate
our methodology, an example of a circuit containing complex
poles and strong nonlinear limiting behavior is analyzed.

Index Terms—abstraction, verification, hybrid automaton,
reachability, behavioral modeling, parameter variable matrices

I. INTRODUCTION

The modern world increasingly relies on circuits control-

ling safety critical systems. The utilizations of these circuits

range from autonomous driving [1], human-robot interactions,

robotic surgery, up till applications in our own bodies such as

in cardiopulmonary bypass and mechanical ventilation. One of

the approaches that guarantees system safety is formal verifi-

cation. Formal verification has deployed solid methodologies

that can cope with growing complexity of digital systems.

In the analog or continuous domain the complexity due to

theoretically infinite number of states and strong nonlinear

dynamic behavior is a challenge formal verification has to

overcome. Moreover, to close the gap from the continuous

physical environment connected with analog interfacing cir-

cuits to the digital signal processing a substantial effort has to

be invested. In this paper we want to introduce an essential

concept for formally verifying analog interface circuitry by

means of hybrid automata on top of an existing approach [2].

Compared with the previous approach, this approach deploys

a method that covers the full behavior exhibited by nonlinear

circuit at transistor level with full SPICE BSIM accuracy. This

is realized by using zonotopes or intervals to describe the

system matrices. The approach is illustrated along an example

circuit containing complex poles and strong nonlinear limiting

behavior. In general, complex conjugate pole-pairs are very

often intentionally used in filters, e.g. in antialiasing filters for

ADCs or signal conditioning filters for sensor or actor signals.

A. Previous Work

Formal verification of analog transistor-level circuits [3]

comes in equivalence checking [4], [5] and in model checking

[6] flavors. However if we go up to higher levels, the behavior

of the analog circuit has to be abstracted. In that area a

long history in automatic modeling approaches [7] exist, all

suffering from hardly being able to conduct the nonlinear

behavior with the reduced order dynamics.

An advantage of an abstract model is its use in a powerful

formal verification environment of hybrid systems [8]. There

are some approaches that directly calculate nonlinear analog

reduced order dynamics from transistor-level circuits [9]. In

this paper we use the approach presented in [2] to generate

directly a hybrid system using a sampling approach on a non-

linear analog transistor level circuit with full BSIM accuracy.

B. Overview
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Fig. 1. Overview of the introduced methodology

An outline of the introduced approach is presented in Fig.

1. Starting from a SPICE netlist, both the original and the

reduced state spaces are sampled. Based on the sampling

of the reduced state space and by using the eigenvalues of

the linearized system, the groups of the hybrid automaton

(HA) are identified. Using a connection graph, regions of the

HA are identified. The locations (states) of the HA are than
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identified using the found groups and regions. At each location

of the HA a linear system with a parameter variable system

matrix describes the system behavior. The system matrices are

found by hulling the eigenvalues at each location by zonotopes

or intervals. Finally the HA is transformed into a Cora [8]

supported syntax and a reachability analysis can be performed.

II. AUTOMATIC ABSTRACTION AND MODEL GENERATION

A. State Space Sampling

Using a state space sampler, the nonlinear transistor level

circuit is linearized to a SISO system. Note that for ease of

reading, we use a SISO system here. However the method is

also able to handle MIMO systems. The sampling is done for

each point in the state space of the nonlinear system and for

all input voltages. This results in the following equation:

C ·∆~̇x+G ·∆~x = ~b ·∆u

∆y = ~rT ·∆~x
(1)

with the capacitance matrix C, the admittance matrix G, and

the input and output of the system u and y respectively. ~b and

~r are the input and output vectors. Note that the rank of C
represents the actual number of states (n) of the system. The

system can be transformed from the original ~x domain to a

canonical state space ~xs, as described in [10], by multiplying

state space equation with E and using the transformation

∆~x = F∆~xs .This yields the following equation:

s · E · C · F ·∆~xs + E ·G · F ·∆~xs = E ·~b ·∆u

∆y = ~rT · F ·∆~xs.
(2)

Note that F can be computed from the right eigenvectors of

the generalized eigenproblem, while E is a proper calculated

matrix from the same problem. Expanding (2) and splitting

the equation into a differential part subscript with (λ) with n
equations and an algebraic part subscript (∞) with size(C)−n
equations, (2) can be rewritten as:

s ·

[

I 0
0 0

] [

∆~xs,λ

∆~xs,∞

]

+

[

−Λ 0
0 I

] [

∆~xs,λ

∆~xs,∞

]

=

[

~̃
bλ
~̃
b∞

]

·∆u

∆y =
[

~̃rTλ
~̃rT
∞

]

[

∆~xs,λ

∆~xs,∞

]

(3)

with:

F =
[

FλF∞

]

E =

[

Eλ

E
∞

]

(4)

Where I is a identity matrix and Λ a diagonal or band-diagonal

matrix filled with the finite eigenvalues from the underlying

generalized Eigenproblem. Note that transformed vectors are

marked with a tilde (̃ ). The differential part of (3), subscript

with λ, is referred to as the reduced state space of the system.

B. System Description in the Reduced State Space

With the data set at hand, containing both spaces (~x and ~xs),

the groups and regions needed for the generation of the HA can

be identified. As stated in [2], the group identification is done

based on eigenvalues clustering, while the region identification

is done by using a connection graph. Note that regions are used

to divide the groups if the points in the state space have similar

eigenvalues but are reached with different input voltages. In

order to describe the system behavior at each of the location of

the HA, the eigenvalues and the steady state points (DC) are

used. For each locations of the HA, the system is linearized

around a suitable operating point. Each of the locations of the

HA can then be described as:

∆~̇xs = A ·∆~xs +B∆u (5)

such that:

∆~xs = ~xs − ~xDC A = −Eλ ·Gλ · Fλ = Λ (6)

∆u = u− uDC B = Eλ ·~b

Instead of using the matrix A containing the mean of the

eigenvalues clustered, this approach utilizes a system matrix

bounded by a matrix zonotope A[z] or an interval matrix A[i]

as defined in [8]:

A[z] ={G(0) +
k

∑

i=1

pi ·G
(i) |pi ∈ [−1, 1], G(i) ∈ R

nxn} (7)

A[i] =[A,A] , ∀i, j : ai,j ≤ ai,j , A,A ∈ R
nxn (8)

The geometric bounds of the system matrix A can be identified

by the eigenvalues. In order to illustrate the process, consider

the circuit shown in Fig.2.

The circuit shown in Fig. 2 exhibits a strong nonlinear limiting
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Fig. 2. Second order low-pass filter with a gain of 1.695, a complex pole
pair, and a nonlinear limitation at 1.5V .The operational amplifier is a SPICE
file consisting of 11 transistors in a 350nm CMOS technology [11] .

behavior. Moreover, the eigenvalues of the linearized system

obtained by means of equations (1) and (2) change from

complex to purely real in the limiting regions. Fig. 3 shows

the root locus of the system. The movement and conversion of

the complex pole pair to two real poles due to the nonlinear

behavior in the limiting region is clearly visible. Our approach

describes a group of eigenvalues with an interval matrix as

illustrated in Fig. 3.

The region identification is illustrated in Fig. 4. As seen,

2 groups have been identified by the eigenvalue clustering.

Group 2 has been divided into 2 regions, which is due to

the fact that both regions have the nearly the same sets of

eigenvalues, but can be reached with different input voltages.

The large red dots shown in Fig. 4 represent the operating

points at different input voltages. Note that selected points

from this set are used to linearize the systems as shown in

equations (5), (6). Compared to Fig. 3 which uses interval
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Fig. 3. Root locus of the circuit from Fig. 2. Each pair the colored intervals
belonging to the same group represent the system matrix A.
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Fig. 4. State space of the reduced system of the circuit shown in Fig. 2

matrices to hull the eigenvalues, out approach works also

with matrix zonotopes as is illustrate in Fig. 5. In fact Fig. 5

represents our methodology with 5 locations (left) and with

3 locations (right) for the HA, while Fig. 3 uses only 3

locations.Note that the zonotopic hull for some groups in Fig.

5 is too narrow to be drawn. Thus A in (6) can now be

replaced by a matrix zonotope or an interval matrix that hulls

all eigenvalues at a location of the HA (λloc) :

A[z/i] = matZonotope(λloc)/matInterval(λloc)

C. Back-transformation into the ~x-domain

After performing the reachability analysis on the HA, the

result must be transformed back from the ~xs-domain into the

~x-domain. This is done with following equation:

∆~x = C ·∆~xs +D∆u (9)

such that:

∆~x = ~x− ~xDC C = Fλ D = F
∞

· E
∞

·~b (10)

Note that each location of the HA contains different values

in (6) and (10), and that ~x, ~xs and u from (9) represent
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Fig. 5. Root locus of the circuit from Fig. 2. The right side of the image
illustrates a HA with 3 location (11 21 22) while the left side illustrates a
HA with 5 locations (11 21 22 31 32). The numbers represent the groups
followed by the regions.

zonotopes. The matrices F and E are still matrices and not

matrix zonotopes. In the future, these matrices will be replaced

by matrix zonotopes to over approximate the system behavior.

For the circuit in Fig. 7, this can be neglected as the changes

in F and E ares negligible within a location of the HA.

III. EXPERIMENTAL RESULTS

For the circuit from Fig. 2, the results of the reachability

analysis with Vin = 2 V along with a back-transformation are

illustrated in Fig. 6 for the output voltage Vnout. As seen, the

HA described with matrix zonotopes (upper part of the image)

exhibits better results than the HA described with interval

matrices (middle part). The lower part of the image shows

a HA with 5 locations described with interval matrices. As

seen, this HA exhibits the best results but over approximates

compared to the zonotope matrix with a lower number of

locations. The discontinuity in the top and middle images and

the behavior of the HA with 5 locations at G3R1 are the result

of grouping all eigenvalues. The eigenvalues far to the left

might have been the result of some numeric noise.

Consider the example from [2] shown in Fig. 7. The circuit

exhibits a strong limiting behavior at 1.5V. Compared to

the previous low-pass filter (Fig. 2), the circuit has only

eigenvalues that change along the real axis. Additionally an

uncertainty of 0.5V in the input voltage is considered. The

reachability analysis of the reduced system is shown in Fig. 9,

while Fig. 8 shows one of the 24 nodes from the ~x-space

(Vnout) versus time. Two reachability analyses have been

performed with Vin = 2V and Vin = 3V.

IV. CONCLUSION

In this paper, an approach for the formal verification of

transistor-level circuits using automatic abstraction to hybrid

automaton has been proposed. Compared with the approach

in [2], this approach utilizes the eigenvalues of the sampled

state space and generates parameter variable system matrices
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Fig. 6. Vnout from Fig. 2 versus time. Simulation is done with Vin = 2V. The
upper part of the figure belongs to a HA described with matrix zonotopes with
3 locations (right side of Fig. 5), while the middle and lower part belongs to
a HA described with interval matrices. Note that the middle image belong to
a HA with 3 locations while the lower one belongs to a HA with 5 locations
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Fig. 7. Circuit of a second order low-pass filter from [2]. The corresponding
netlist of the operational amplifier is a SPICE file consisting of 11 transistors
in a 350nm CMOS technology [11].

that over-approximate the reachable region. Different settings

can be applied to this abstraction resulting in either more

abstract or more precise models and reachable regions. Future

work will be done on an error measures and solving the

discontinuities in the reachable regions. As seen throughout

the paper, this approach shows promising results for the formal

verification of a complex nonlinear system.
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