
Behavioral Modeling of Transistor-Level Circuits
using Automatic Abstraction to Hybrid Automata

Ahmad Tarraf
Institute for Computer Science

Goethe University Frankfurt, Germany
tarraf@em.cs.uni-frankfurt.de

Lars Hedrich
Institute for Computer Science

Goethe University Frankfurt, Germany
hedrich@em.cs.uni-frankfurt.de

Abstract—Accurate abstracted behavioral modeling of analog
circuits is still an open problem, especially when the abstrac-
tion process is automated. In this paper we present an auto-
mated abstraction technique of transistor level circuits with full
SPICE accuracy alongside a significant simulation speed-up. The
methodology computes a hybrid automaton which is transformed
into a behavioral model in Verilog-A. The resulting hybrid
automaton exhibits linear behavior as well as the technology
dependent nonlinear e.g. limiting behavior. The accuracy and
speed-up of the methodology is evaluated on several transistor
level circuits ranging from simple operational amplifiers up to a
complex industrial OTA-based Gm/C filter. Finally, we formally
verify the equivalence between the generated model and the
original circuit.

Index Terms—abstraction, verification, hybrid automaton,
Verilog-A, behavioral modeling

I. INTRODUCTION

Automatic behavioral modeling of analog circuits is an open
problem with a long research history [1]. A large speed-up
factor of these behavioral models would be desired to support
the complex simulation of at system or at least at module level.
As the systems integrable on a chip become more complex
and heterogeneous, the use of accurate behavioral models
for analog signal processing and interfacing would enhance
design, simulation and validation routines.

Due to the lack of automatic tools, most design groups
manually write Verilog-A, VHDL-AMS or MAST models to
perform module or system simulations. Even if a behavioral
model is available, the succeeding problem is to proof the
validity of this model. For example, due to increased demand
in safety for autonomous driving applications, the need for a
verifiable methodology of model generation is obvious. In this
paper we want to tackle both parts of the problem:
• First, automatically generate a behavioral model in

Verilog-A from a transistor-level netlist with SPICE
BSIM accuracy.

• Second, compare the model against the netlist with a
formal method (equivalence checking) including the cal-
culation of the modeling error.

To tackle the first problem, we abstract the linear and nonlinear
behavior of the transistor-level netlist to an hybrid automaton.
Where each of the states of the automaton models the behavior
of the system piecewise linear. We developed a methodology
to generate a behavioral model in Verilog-A from these

hybrid automaton. The model represents accurately the input-
output behavior of the block. Additionally, every internal nodal
voltage can be generated for debugging purposes. Moreover,
the generated models are pin compatible, thus they can be
easily used on top-level or module-level simulations. This
comes also with the advantage of using the models to gen-
erate larger compositional ones. Hence, this approach aims
to reduce the complexity of circuits, decrease simulation time
and group systems by modeling the blocks of an analog signal
processing chain in a compositional manner. An overview of
our methodology is illustrated in Fig. 1.

Fig. 1. An overview of our approach. After the model generation, the model
can be used for simulation or for verification against the original netlist.

The paper is structured as follows: First, we briefly present
the state of the art in section II. Second, we explain the
algorithm behind the automated model generation in section
III. As illustrated in Fig. 1, we sample the state space (III-A),
identify the locations of the hybrid automata (III-B and III-C),
build the Dynamics (III-D) and finally establish the Verilog-A
model (III-E). Third, some examples are handled in section
IV-A, followed by a verification of a generated model against
the original netlist in section IV-B. Finally, the conclusion is
stated in section V.

II. PREVIOUS WORK

Behavioral modeling of analog circuits has been tackled for
a long time [1]. Basic methods start with manual modeling in
the frequency domain [2]. These equation based methods have
been enhanced by direct symbolic simulation based methods

for integrated nonlinear behavioral models [3] and piecewise
linear models [4]. Moreover, the methods have been further
developed to on-the-fly piecewise linear model generation
with the possibility to use an event based simulation [5],
[6]. However, these methods are mostly not fully automated
or cannot handle SPICE netlist with full BSIM transistor
accuracy. Other approaches use numeric approximations like
radial basis functions with neural networks techniques [7] or
general kernels models in support vector machines [8]. The
latter paper uses also the order reduction techniques used in
this paper, to bring the high order resulting from parasitic poles
down to the functional needed order. Unfortunately, these data
driven methods suffer from lower accuracy and difficulties in
obtaining significant speed-ups. More digital oriented methods
like [9] abstract the analog dynamic behavior with finite state
machines. They can be executed directly in the digital domain
but loose the analog dynamics like complex poles.

Besides the problem of model generation, model verification
also plays a crucial role. This is tackled in this paper by using
equivalence checking, where only few analogous approaches
exist [10] [11].

III. AUTOMATIC ABSTRACTION AND MODEL GENERATION

A. Reachable State Space Sampling

The first step for the model generation is to sample the
original netlist at transistor level with full BSIM accuracy. In
order to keep the overall behavior, it is not sufficient to sample
along some transient trajectories. Rather, the circuit has to be
sampled in the reachable state space in an adequate manner.
Thus, we use an algorithm to step through the state space [12],
nonlinearly reducing the order like in [8] and calculating the
reachability [12] of the sampled points. The result is a data
set of sampled reachable points connected by a directed graph
[13]. Additionally, the set contains the nonlinear consistent
operating points ~xP ∈ Rn, the conduction matrix G and the
capacitance matrix C, the input and output vectors ~b and ~rT ,
and the eigenvalues λi of the locally linearized system:

C · ~̇x+G · ~x = ~b · u
y = ~rT · ~x

(1)

This locally linear system is transformed via:

s · E · C · F · ~xs + E ·G · F · ~xs = E ·~b · u
y = ~rT · F · ~xs

(2)

to a Kronecker normal form with new state variables ~xs ∈ Rnr

:

s ·
[
I 0
0 0

] [
~xs,Re
~xs,∞

]
+

[
Λ 0
0 I

] [
~xs,Re
~xs,∞

]
=

[
~̃
bRe
~̃
b∞

]
· u

y =
[
~̃rTRe

~̃rT∞
] [~xs,Re
~xs,∞

] (3)

where I is the identity matrix, while E and F are the
transformation matrices. Λ is a diagonal or band-diagonal
matrix with numerically increasing generalized eigenvalues of

the system. As indicated, transformed vectors are marked with
a tilde (˜). Equation (3) is divided into a reduced part (subscript
Re) and a neglected part (subscript ∞).
F can be computed from the right eigenvectors of the

generalized eigenproblem, while E is a proper calculated
matrix from the same problem. In order to reduce the system
to a low order, the first nr finite eigenvalues are used, while
the remaining eigenvalues are neglected, thus handled like the
infinity part of the system. In fact this realizes the nonlinear
order reduction. Finally, the transformation matrices are split
into two parts, which is later used in section III-C.:

F =
[
FλF∞

]
E =

[
Eλ
E∞

]
(4)

B. Linear Location Identification

R1 R2

R3

C1

C2

-

+
𝑉𝑛𝑖𝑛2𝑉𝑖𝑛

nout
neg

𝑉𝑛𝑜𝑢𝑡 − 𝑉𝑛𝑒𝑔

𝑉𝑛𝑜𝑢𝑡

nin2

Fig. 2. A second order low-pass filter with a nonlinear limitation at 1.5V. The
operational amplifier is a SPICE file consisting of 11 transistors in a 350nm
CMOS technology [14] .

The nr eigenvalues λi from each of the sampled points are
used to identify the regions of the hybrid automata. This can
be achieved in 2 steps. First, the eigenvalues are cluster into
groups. The result of this clustering for the circuit shown in
Fig. 2 is illustrated in Fig. 3. As shown, two groups can be
identified. Note that this clustering is done with an extended
k-means algorithm, and that the number of clusters is either
determined by our algorithm or can be specified by the user
for higher precision.

Second, a correction is done on this clustering in order
to separate the regions which have the same eigenvalue, but
belong to different spatial areas in the state space. For this
example, our methodology separates group 2 into 2 separated
regions, as the limiting behavior happens in both directions
of the input voltage. This can be achieved by examining
the connection graph of the state space. The result of this
clustering is shown in Fig. 3. As illustrated, group 2 has been
separated into two distinct regions. Thus, the data set consists
of two groups of different eigenvalues, with one group having
2 distinct regions in the state space. The red points shown in
Fig. 3, represent the DC operating points of the system. Note
that these points where calculated for a input voltage ranging
in the interval [-4,4] with a step size of 0.5V

Each of the colored data set in Fig. 3 represents a location
of the generated hybrid automaton (HA). For each location of
the HA, a representing DC point is chosen. For the example

-20

-19

6

-18

-17

4

-16

-15

-14

2

-13

-12

0

-11

-10

-2

4-4 3210-1-2-6 -3-4

Group1 region1 (G1R1)
Group2 region1 (G2R1)
Group2 region2 (G2R2)
DC points

Fig. 3. State clustering into two groups. Group 2 has two regions (yellow and
orange). Group 1 has only one region (dark green). As illustrated, the yellow
and orange have nearly the same eigenvalues, but still represent 2 distinct
regions. The red points represent the DC operating points. Note the missing
dimension of the input voltage.

at hand, the representing DC point of G1R1 (group 1, region
1) is the one located at Vnin2 = 0 and Vnout − Vneg = 0.
The region G1R1 is referred to as the center region. The
representing DC point for each of the other locations G2R1
and G2R2 can be chosen as the closest DC point with respect
to location G1R1.

C. Calculating a State Space Representation of HA Locations

A location of the hybrid automata consists of an invariant,
guards, reset and a state equation. Note that the invariants
are only used to calculate the guards as seen later. All of
these equations and variables should be calculated in the ~xs
domain. Thus, for further analysis the transformed state space
(~xs) for each of the locations of the HA has to be calculated.
If we define the first linear system representation around the
origin, the movement from one location to another will result
in a jump of the state variables ~xs. This is due to the new
coordinate system in the new location.

To prevent this jump, we propose to shift the state variables
by a constant at each location, in order to simulate the new sys-
tem behavior in the new coordinate system. For this purpose,
a operating point in the ~xs domain has to be calculated. With
the DC points in the ~x domain at hand, the DC shift ~xS,DC,k
for each location k in the ~xs domain can be calculated by
solving the following equation for ~xS,DC,k+1:

Fλ,k~xs,DC,k+1 = ~xDC,k+1 − ~xDC,k + Fλ,k~xs,DC,k

+ F∞,kE∞,k
~b(uDC,k − uDC,k+1)

(5)

where uDC,k is the input voltage corresponding to the DC
point at location k. The calculation for each location is done in
a recursive manner starting from the most inner one, the center
location, outwards. From this location (k=0), the DC shift

(~xS,DC,1) of the next closest location (k=1) is than calculated
and so forth. The DC points are labeled by the locations
they belong to: ~xs,DC,GR or simply ~xs,GR in the figures. At
this point, only the DC points in the ~xs domain have been
calculated. For determining the guards and invariants of the
HA, we have to transform all points of the original ~x domain
into the new ~xS domain. This is done for each point i by
solving the following equation for ~xs,i:

Fλ,k~xs,i = ~xi − ~xDC,k + Fλ,k~xs,DC,k

+ F∞,kE∞,k
~b(uDC,k − ui)

(6)

Where i stands for an index of a point in the location k.
1) Invariants: Having transformed all points into xs do-

main, the invariants of the locations of the hybrid automaton
can be identified. This is done by enclosing the points of a
given location with a convex hull (see Fig. 4 and Fig. 5). Our
methodology allows the user to choose the type of the convex
hull. We allow three different types of representations for the
convex hulls: Polytope, interval and zonotope representation.
The polytope representation is the most accurate one, while the
remaining two overapproximate. Depending on the type of the
convex hull chosen, the invariants overapproximate differently
the data set.

2) Guards: From the edges of the convex hulls, the guards
to the neighbor locations can be identified. This can be done
by searching for the presence of points from the neighbor
locations to the edges of the convex hulls. For the guards, three
different types of representation exist: Halfspace, Interval and
zonotope representation. While guards of types zonotope and
interval overapproximates in most cases the transitions, guards
of type halfspace make clear cuts. For reachability analysis the
first might be more suitable. However, since we are interested
in simulating the hybrid automaton in Verilog, this paper will
focus on halfspaces. Note that the type of invariant used affects
the guard calculations.

Beside the type of guards, one can also chose the number
of guards between the locations. Either all guards can be
selected, or the guards are reduce to one dominant one. The
dominant guard encloses the highest number of points to the
surrounding location. Note that the number of guards depends
on the number of edges of the convex hull.

In Fig. 4 our methodology with an invariant of type polytope
and guards of types halfspaces is illustrated for the circuit
shown in Fig. 2. Note that only the dominant guards are
considered. This setup is used throughout this paper. To
compare this classification to a different region identification,
Fig. 5 has been created using intervals as invariants and
guards. As illustrated, the invariants of the locations are
overapproximated, thus decreasing the number of available
guards compared to the previous region identification. Note
that the guards have a negligible thickness (0.01 for the
example at hand).

D. Dynamics of the Hybrid Automata

Along with the guards, the operating points in both domains,
the eigenvalues and eigenvectors, we are now able to specify

-5 -4 -3 -2 -1 0 1 2 3 4 5
-6

-4

-2

0

2

4

6

x
s,11

x
s,21

x
s,22

Group:1 Region:1
x

s,11

Group:2 Region:1
x

s,21

Group:2 Region:2
x

s,22

CH 11
1 1 To 2 1
1 1 To 2 2
CH 21
2 1 To 1 1
CH 22
2 2 To 1 1

Fig. 4. State space of the example illustrated in Fig. 2 using polytopes as
invariants and halfspaces as guards. The number of edges of the convex hulls
at G1R1, G2R1 and G2R2 are 29, 10 and 19 respectively.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-6

-4

-2

0

2

4

6

x
s,11

x
s,21

x
s,22

Group:1 Region:1
x

s,11

Group:2 Region:1
x

s,21

Group:2 Region:2
x

s,22

Group1 region1
1 1 To 2 1
1 1 To 2 2
Group2 region1
2 1 To 1 1
Group2 region2
2 2 To 1 1

Fig. 5. State space of the example illustrated in Fig. 2 using intervals as
invariants and guards.

the dynamics of the hybrid automaton of our running example
from Fig. 2 as follows:

~̇xs,LOC = Λ ·∆~xs,LOC + Eλ ·~b ·∆uLOC (7)

The index ’LOC’ in (7) represents a location of the hybrid
automaton in the ~xs domain. The system matrix Λ contains
the nr eigenvalues (see eq. (3)) and is in block diagonal
form. It is important to notice that the equations of the hybrid
automaton at each location are linearized around the DC
points in the ~xs domain, as indicated by the term ∆. Thus,
∆~xs,LOC = ~xs,LOC−~xs,DC,LOC . This means that after taking
a guard from location G1R1 to location G2R1 for example,
the DC points in the ~xs domain change from ~xs,DC,G1R1 to
~xs,DC,G2R1 as illustrated in Fig. 4.

For the example at hand, the locations of the hybrid au-
tomata at G1R1 and G2R1 are represented in equations (8) and
(9), respectively. For G2R2, the state equation would be similar
to (9) with the difference, that uDC,LOC and ~xs,DC,LOC

vary. These equations are later transformed into separated row
equations for the Verilog-A simulation.

~̇xs,G1R1 =

[
−10.4 0

0 −1099.7

]
∆~xs,G1R1 +

[
−8.89
999.9

]
· ∆u (8)

~̇xs,G2R1 =

[
−18.6 0

0 −1100.3

]
∆~xs,G2R1 +

[
−9.51
999.1

]
· ∆u (9)

such that:

~xs,DC,G1R1 =
[
0 0

]T
uDC,G1R1 = 0

~xs,DC,G2R1 =
[
−1.71 1.81

]T
uDC,G2R1 = 2

As stated earlier, there are different approaches to repre-
sent the guards. Regardless of the representation, the guards
are transformed into inequalities at the given locations. For
example, the guards at location G1R1 to G2R1 and G2R2
are represented in the following 2 inequalities. Note that the
subindex ’DC’ has been omitted.

0.42(xs,1 − xs,1,G1R1) + 3.13 · 10−4(xs,2 − xs,2,G1R1) < −0.71

−0.92(xs,1 − xs,1,G1R1) + 2.78 · 10−3(xs,2 − xs,2,G1R1) < −1.81

E. Hybrid Automata in Verilog-A

Having computed the HA, the system can now be refor-
mulated in Verilog-A. As indicated earlier, the invariants are
neglected as the guards are sufficient to use. Therefore, the
guards are wrapped in if statements and used for the identi-
fication of the current location. Furthermore, each location of
the hybrid automaton contains a set of variables specific to it.
These variables include each element of the eigenvectors, the
operating points in both domains, the input vector ~b and the
elements of the system matrix indicated in (7). Additionally, in
order to obtain the n node voltages and currents in the original
~x domain, a back transformation from the ~xs space must be
performed. This can be done with (10), where k indicates the
location of the system:

~x = Fλ,k
~V (xs) + ~xDC,k + F∞,kE∞,k

~b(u− uDC,k) (10)

All these equations are automatically generated into a Verilog-
A behavioral model with nr ddt operators and nLOC locations.
The inputs and output variables are electrical nodes.

IV. EXPERIMENTAL RESULTS

A. Examples

The experimental results are performed on a Intel Core
I5-7300HQ CPU @ 2.50GHz with 16GB ram using the
SPICE simulator Gnucap [15] together with the Verilog-A
compiler ADMSXml [16]. The circuit from Fig. 2 is compared
against the behavioral Verilog-A model with 3 locations as
previously elaborated. The results of a transient simulation
of this comparison is shown in Fig. 6. As illustrated, there
are some deviations during the switching from the linear to
the limiting mode. However, by using a HA with 5 locations
this error can be significantly reduced. In both cases, due to
the forward linear description of the HA in Verilog-A, the

Fig. 6. SPICE simulation results of the original netlist versus an hybrid
automaton with 3 and 5 locations respectively. The input voltage to the circuit
is a sin wave with an amplitude of 5V and a frequency of 1 Hz. The output
voltage differs depending on the modeling effort

simulator does not react on the edges with strongly reduced
time steps. Moreover, these edges can be reduced or even
eliminated by several techniques: increasing the number of
locations as mentioned, increasing the order of the system to
include the input, shifting the guards to the operating points
(used in the next example) or by expanding the convex hull. As
a second example, we abstracted an industrial full differential
second order gm/C filter. The netlist of this filter consists of 38
nodes and 42 transistors. The hybrid automaton generated by
our approach consists of 3 locations as shown in Fig. 7. The
circuit has 2 dominant state variables implying 2 eigenvalues.
These eigenvalues are complex and vary as illustrated in Fig.
7. Note that only the real part of the first eigenvalue is
illustrated. The simulation results of the generated Verilog-
A model versus the original transistor netlist are shown in
Fig. 8. Additionally, the first coordinate of the shifted state
xS,1,DC,LOC is plotted. A change in this value indicates that
the HA has changed the location.

A summary of all computed example circuits along with
some properties and performances is illustrated in Table I.
Note that the number of time steps during transient simulation
is comparable between the circuit and the model indicating no
problem with location switching in the model. Moreover, the
low number of Newton iterations indicates a faster conver-
gence, which is expected from a piecewise linear behavior.
The speed up is significant and varies between 30 for smaller
transistor netlist up to 130 for bigger netlists. Furthermore, we
expect even bigger speedups for more sophisticated netlists on
modern process nodes. Note that the modeling time, which
is the time that the algorithm spends from III-B to III-E, is
reasonable for mid size circuits. As indicated in Table I, the
models show a favorable accuracy compared with the original
netlists.

B. Formal Verification of the Generated Models

To close this tool chain, we formally verify the generated
models. This is done by using an equivalence checking tool
[12]. In Fig. 9 the deviations of the output voltage in the
reachable state space between the original transistor netlist and

Fig. 7. Real part of the first eigenvalue plotted versus the shifted and
transformed state space of the gm/C filter. The different locations of the HA
are plotted in different colors. The DC operating points are plotted in red.

Fig. 8. Simulation results of the netlist versus the generated HA with 3
locations of the gm/C filter. The input of both systems is a sine signal with
an amplitude and offset at 1.52V and a frequency at 1 KHz.

the generated model for the first example in section IV-A are
illustrated. As observed, the closer the system behavior is to
the selected sample points for linearization, the more accurate
the results are. At the far borders of the state space, the
behavior deviates from the original model. But as stated, their
are approaches which can improve this behavior e.g. increase
the number of locations. Additional improvement could be
optimizing the used eigenvalues and the guards’ positions. The
resulting errors are in column Accuracy in Table I.

V. CONCLUSION

In this paper, we have presented an approach to automati-
cally generate abstracted Verilog-A models based on netlists
with full BSIM accuracy. Different settings can be applied
to this abstraction, resulting in either more abstracted or
preciser models. To analyze the accuracy, the generated models
are verified by equivalence checking. The methodology key
improvement is the significant speed up of the simulation time

TABLE I
COMPARISON OF THE TRANSISTOR-LEVEL CIRCUITS WITH THE PRESENTED BEHAVIORAL MODELS.

Circuit Model Complexity Sample
points

Sampling +
Data read

time[s]

Modeling
time[s] Locations Accuracy† Newton

iterations
Time
steps

Run
time[s]

Speed
up

Differential
mode Gm-C

filter

Netlist 11 OTAs, 46
trans., 38 nodes - - - - - 50204 10007 17.41 -

HA 916 lines
5 nodes 17997 372.2+127.4 6.05 3 0.81% 39221 10006 0.14 124.3

Lowpass
based on

2-stage OTA

Netlist 1 OTA, 11
trans., 19 nodes - - - - - 100187 20009 13.31 -

HA 403 lines
3 nodes 312 0.34+1.68 1.51 3 3.6% 61496 20006 0.24 55.45

Second
order low-
pass filter

Netlist 1 OTA, 11
trans., 19 nodes - - - - - 62572 12012 6.06 -

HA 217 lines
4 nodes 4017 43.12+10.97 4.46 3 15.2% 58202 12057 0.20 30.29

HA 765 lines
4 nodes 4017 43.12+10.97 6.04 5 6.63% 58673 12121 0.21 28.85

† Maximum of the relative dynamic and the output error from equivalence checking. The output error is the same as yerror from Fig. 9

while maintaining an accurate model and having an full auto-
matic approach. Moreover, due to the fact that the generated
models are pin compatible they are suitable candidates for
simulation and formal verification on higher abstraction levels.

5

0

0

0.05

-4 -3 -2 -5

0.1

-1 0 1 2

0.15

3 4

0.2

0.25

0.3

Group1 region1
Group1 region2
Group2 region1
DC points

Fig. 9. Output deviation (yerror) between the generated model, with three
locations, versus the original netlist for the example form Section IV-A. The
three used DC points for modeling exhibit the lowest errors.

VI. ACKNOWLEDGMENT

This paper presents result of the project faveAC funded by
the DFG under the project number 286525601.

REFERENCES

[1] G. G. Gielen and J. R. Phillips, “Simulation and modeling for analog and
mixed-signal integrated circuits,” Electronic Design Automation for IC
Implementation, Circuit Design, and Process Technology, pp. 455–477,
2016.

[2] B. Antao and F. El-Turky, “Automatic Analog Model Generation for
Behavioral Simulation,” CICC: Custom Integrated Circuit Conference,
pp. 12.2.1–12.2.4, 1992.

[3] C. Borchers, L. Hedrich, and E. Barke, “Equation-Based Behavioral
Model Generation for Nonlinear +Analog Circuits,” in DAC: Design
Automation Conference, pp. 236–239, 3–7 June 1996.

[4] F. Fernandez, B. Perez-Verdu, and A. Rodriguez-Vazquez, “Behav-
ioral Modeling of PWL Analog Circuits Using Symbolic Analysis,”
ISCAS ’98: IEEE International Symposium on Circuits and Systems,
vol. VI, pp. VI–17 – VI–20, 1998.

[5] L. Näthke, V. Burkhay, L. Hedrich, and E. Barke, “Hierarchical auto-
matic behavioral model generation of nonlinear analog circuits based on
nonlinear symbolic techniques,” in DATE: Design Automation and Test
in Europe, pp. 442–447, 2004.

[6] D. Zaum, S. Hoelldampf, M. Olbrich, E. Barke, I. Neumann, and
S. Schmidt, “The PRAISE approach for accelerated transient analysis
applied to wire models,” in BMAS: Behavioral Modeling and Simulation
Workshop, pp. 120–125, 2009.

[7] M. Isaksson, D. Wisell, and D. Ronnow, “Wide-band dynamic modeling
of power amplifiers using radial-basis function neural networks,” IEEE
Transactions on Microwave Theory and Techniques, vol. 53, no. 11,
pp. 3422–3428, 2005.

[8] J. Phillips, J. Afonso, A. Oliveira, and L. M. Silveira, “Analog macro-
modeling using kernel methods,” in ICCAD: International Conference
on Computer-aided design, p. 446, 2003.

[9] A. V. Karthik, S. Ray, P. Nuzzo, A. Mishchenko, R. K. Brayton, and
J. Roychowdhury, “ABCD-NL: Approximating continuous non-linear
dynamical systems using purely Boolean models for analog/mixed-signal
verification.,” in ASP-DAC, pp. 250–255, 2014.

[10] A. Singh and P. Li, “On behavioral model equivalence checking for large
analog/mixed signal systems,” in ICCAD, pp. 55–61, 2010.

[11] S. Steinhorst and L. Hedrich, “Equivalence checking of nonlinear analog
circuits for hierarchical AMS System Verification,” in VLSI-SoC: VLSI
and System-on-Chip, pp. 135–140, IEEE, 2012.

[12] S. Steinhorst and L. Hedrich, “Advanced methods for equivalence
checking of analog circuits with strong nonlinearities,” Formal Methods
in System Design, vol. 36, no. 2, pp. 131–147, 2010.

[13] S. Steinhorst and L. Hedrich, “Trajectory-directed discrete state space
modeling for formal verification of nonlinear analog circuits,” in ICCAD:
International Conference on Computer-Aided Design, pp. 202–209,
2012.

[14] “Ams hitkit - Process Design Kit (PDK) for Cadence Tools, Circuit
Simulation, Device Models.” http://asic.ams.com/hitkit/index.html.

[15] A. Davis, “An overview of algorithms in Gnucap,” in Univer-
sity/Government/Industry Microelectronics Symp., pp. 360–361, 2003.

[16] ADMS Automatic Device Model Synthesizer,
“https://sourceforge.net/projects/mot-adms/.”

