
Team Description for RoboCup 2017

Dipl.-Inf. Andreas Fürtig1 (Teamleader)
Jonathan Cyriax Brast2, Sina Ditzel2, Hans-Joachim Hammer2, Timm Hess2,
Kyle Rinfreschi2, Jens-Michael Siegl2, Stefanie Steiner2, Felix Weiglhofer2, and

Philipp Wörner2

1 Electronic Design Methodology Group
Institute for Computer Science, Goethe Universität Frankfurt am Main, Germany

Email: fuertig@em.cs.uni-frankfurt.de
2 Institute for Computer Science, Goethe Universität Frankfurt am Main, Germany

Email: team@bembelbots.de
Homepage: www.bembelbots.de

Github: github.com/Bembelbots

1 Introduction

The RoboCup team Bembelbots was founded in 2009 at the Goethe University
Frankfurt (Main), Germany as a group fully organized by students. As there is
no robotics group at the university, the team should help students to increase
their experience in robotics, as well as programming skills in addition to the
theoretical orientation of the computer science degree program of the university.
The team does not have any constant financial resources, so a lot of resources
are used to gain funding to afford robot upgrades and additional hardware.

Currently 9 undergraduate students as well as one PHD student working on
the implementation of the framework for playing soccer. Team Leader is Andreas
Fürtig, a PhD student from the Electronic Design Methodology (EM) group at
the Institute of Computer Science at Goethe University. The team owns six Nao

2

H25 v5 robots, as well as six old H21 v4 versions which are mainly used for demo
purposes and public relations.

Since 2012 the team Bembelbots organize the FIAS BembelCup in line with
the ”Night of Science” event, a public event showing different aspects of science,
technology, engineering and mathematic study paths offered at the Goethe Uni-
versity in Frankfurt. This small tournament of four competing teams is one of
the final tests for the RoboCup, as it is temporally located nearby.

Fig. 1. Team Bembelbots at the RoboCup German Open 2017 in Magdeburg, Germany.

2 JRLSoccer System Architecture

As the main goal of the team is to teach students in the field of robotics as well
as working on a complex software architecture, the team focused right from the
beginning on building a full framework from scratch rather than using existing
architectures. Our framework is split up into four main parts: a backend imple-
mentation, providing data for the frontend, which represents the functionality
of the robots software. Backend and frontend communicate through a BOOST
shared memory model, giving us the possibility to be platform independent. A
standalone monitor binary provides system informations of robot health, as well
as game configurations during competitions through TCP/IP. For debugging
purposes we use several tools written in Python combined in our debug tool
BembelDbug. Figure 2 illustrates the overall structure of our framework.

3

Backend

Shared Memory

Frontend

Nao Sequence Simulator

or or

Cognition
Motion

B
e
m

b
e
lb

o
ts

JR
L
S

o
c
c
e
r S

y
s
te

m
 A

rc
h

ite
c
tu

re
JRLmonitor

BembelDbug

UDP
TCP/IP

U
D

P

Fig. 2. Overview of the JRLSoccer Framework.

2.1 Backend

The backend can be replaced to provide data on different systems like the robot
itself or to provide simulated data and sequences for offline testing of our frame-
work:

backend-naoqi This backend is used on the robot and communicates with the
hardware directly using the DCM provided by the NaoQi1 (version 2.1.4)
for sensor and actuator data. Images are captured directly from the camera
using a Linux V4L2 implementation.

backend-sequence-loader Most of our tests are based on a given testset of
sensor data and images combined for different game situations. These se-
quences can be loaded by a sequence loader application which communicates
with our frontend. In this way we are able to test our frontend especially for
memory leaks and communication purposes.

backend-simspark To simulate our robot and to test our behavior as well
as motion based functionality we use a direct connection to the simspark
simulator, providing sensor data and perceptions for the robot.

2.2 Frontend

The frontend jsfrontend is where all of our game logic is implemented. As a
standalone program this allows us to test the frontend separately from a robot,

1 Aldebaran Robotics Documentation, http://doc.aldebaran.com/2-1/naoqi/

http://doc.aldebaran.com/2-1/naoqi/

4

which is very helpful to reduce the possibility of memory leaks. Software Man-
agement is organized using GIT so that the whole framework can be tested using
a Jenkins2 continuous integration process after every code change.

Our framework is organized as a blackboard architecture, giving every sub-
module the possibility to share data, access other informations and increase de-
bugability. It is also possible to access and manipulate every blackboard directly
using our debug tools.

Mainly the frontend is split up in two major parts. The cognition thread
is synced with the image gathering process, calculating the localization, world
beliefs and the desired behavior decisions. The motion thread itself is limited by
the sensor acquisition frequency and computes the movements of the robot (see
Section 5 for more details).

Network communication with other robots as well as the whistle detection
(see Section 6) are also placed in separate threads. These threads will be started
and stopped on demand. An overview of our frontend structure can be found in
Figure 3.

Bembelbots
JSFrontend Overview

Motion Thread
-walk
-kick
-standup
-kinematics

Data

Cognition Thread

Image Processing
Data

Pose Estimation
Data

Worldmodel Creation
Data

Behavior Decisions
Data

Config

BlackboardNetwork Com.

Whistle Detection

Data

Data
-SPL messages
-Worldmodel
-Debug

Calibration

Fig. 3. Overview of the main parts of the JSfrontend architecture with its main threads.

3 Object Detection Pipeline

Finally, we decided to partially replace our statistics and color based vision [1]
by the colorless vision module from HTWK Leipzig3 and created a patch to
compile it with the standard Aldebaran Robotics crosscompile toolchain. As the
module only detects objects in the image plane, we made it compatible with our
localization algorithms that were already in place.

2 Jenkins open source automation server: www.jenkins.io/
3 Nao-Team HTWK, HTWKVision: github.com/NaoHTWK/HTWKVision

www.jenkins.io/
github.com/NaoHTWK/HTWKVision

5

3.1 Crossing Detection

We use a line based approach to detect T or L shaped crossings. The line seg-
ments recieved from the vision pipeline are compared to each other to see if they
intersect at 90 degrees if projected from the image into the robots coordinate
system. These are then considered as possible candidates for T or L crossings.
The candidate line segments are extended as far as possible in order to compare
the position of intersection to the width of the line. If distance of the intersection
point is longer than half of the line width it is considered to be a T crossing,
otherwise it is considered an L crossing. The intersection point closest to the end
of the line is used for this purpose.

For the localisation of the robot it is important to estimate the orientation
of the crossings. So each crossing is marked with a fixed angle [2] to calculate
one unique position for each type of crossing on the field.

3.2 Ball Detection

The ball detection pipeline comprises of two main components, namely a region
of interest (ROI) prediction process and a convolutional neural network (CNN)
classifier. The ROI prediction process applies three filter stages to each image

Fig. 4. Example of synthetic data with semantic ground truth annotation. The fig-
ure shows a single example of a simulated playing situation (left) together with its
automatically generated pixel wise ground truth annotation (right).

while also making use of features already provided by the HTWK vision frame-
work [8], such as line segments (green-to-white gradients) unassigned to line
objects, field borders, and green- and white- color class estimations, to prevent
redundant feature computation. In the first filter stage scanline points that could
not be assigned to a line segment are clustered to extract the most interesting
regions from the image, reducing the effective image region to be considered in
the further image processing. In the second filter stage black colored blobs are
segmented from each initial guess region as they are a main feature of the ball
that is currently used in the SPL. The third filter stage performs a scanline

6

procedure using the image’s Cr-color information to detect the ball border and
close it in a tight bounding box. This stage also performs several sanity checks
on aspect ratio and size of the bounding boxes before subsequently passing them
to the CNN.

The CNN classifier discriminates into two classes, namely ”ball” and ”no
ball” and has been implemented using the Tiny-DNN [6] framework. It is com-
posed of two convolution-blocks (convolution, ReLU-activation, max-pooling),
followed by two fully connected layers, which are also implemented as convolu-
tions [7]. Training of the CNN has been performed using a combination of real
world data and synthetic data, shown in Figure 3.2, generated using the Bembel-
bots UERoboCup Simulator which is our UnrealEngine4 based synthetic train-
ing set generator, that has been open-sourced recently4 and is available for the
RoboCup community trying to support all teams with ”unlimited” amounts of
annotated training data boosting the usage of data driven approaches through-
out our league. A first look at the benefits and challenges of using synthetic
data in training neural networks for classification tasks in the SPL RoboCup
environment has been researched by our team and will be published soon.

4 Robot Localization

4.1 Particlefilter

To estimate the pose of the robot using visual perceived landmarks and odometry
we are using a Monte Carlo Localization (MCL) algorithm based on a particle
filter [3]. One of the main reasons for the usage of the MCL algorithm is the
possibility to solve global localization problems, as well as the integration of all
observed landmarks without further processing. The filter represents the belief
of robot’s pose with a set of samples. Each sample (particle) is a possible pose
of the robot. In the initial state, after a penalty, and after manual placement
the particle filter is initialized by fixed pre-determined distributions according
to the situation.

In our localization approach we use a combination of motion controls and sen-
sor data from gyroscopes for the motion model update and weight the particles
by matching the visual perceived lines, crossings interceptions and poles with
the field landmarks. In each measurement update the filter compares landmarks
by their distance and angle and matches them using the maximum likelihood
method.

We chose the systematic resampling algorithm [9], which yields a reliable
localization result for low numbers of particles (less then 100). To determine the
robot’s pose from the particle distribution we decided to calculate the particle
closest to the mean of all particles. This offers the best compromise between
accuracy and runtime performance compared to choosing the particle with the
highest weight or applying a cluster algorithm.

4 Bembelbots UERoboCup synthetic training set generator: github.com/Bembelbots/
UERoboCupUERoboCup

github.com/Bembelbots/UERoboCupUERoboCup
github.com/Bembelbots/UERoboCupUERoboCup

7

Fig. 5. Evaluation of the particle filter: The black line represents the ground truth
position of the robot, the yellow to red line shows the estimated position and the color
decodes the estimated orientation of the robot. The circles represent the distribution
of the particles: Dark grey circles display the mean distance of the particles from the
center, light grey circles indicate the particle position with the highest distance.

To evaluate the filter and the different methods of resampling and position
determination we developed a system (a ceiling mounted camera tracking LEDs
attached to Nao’s head) which we use to generate ground truth sequences. The
evaluation of a path over the playingfield is illustrated in Figure 5.

4.2 Worldmodel

Each robot broadcasts its estimated pose, last known ball location and additional
data via UDP in the standard SPL message format (see Figure 6). All data
received from teammates as well as the robot’s own location and ball position
are merged into a worldmodel, based on which the behavior decides its own
actions as well as complex team strategy.

5 Bodycontrol

The new Bodycontrol and Motion Framework[5] has a modular structure, in
which all motions are separate modules, some of which run exclusively such as
whole body motions (i.e. stand up moves) and some run in parallel such as the
walk and the head looking towards a position.

Apart from motions the bodycontrol includes additional functionalities like
sensor data acquisition or including center of mass (CoM) calculations, cam-

8

Image
(ICS)

vision results

Camera transformation to
Robot Coordinate System (RCS)

Worldmodel
Robot 0, (x,y,a), ball seen, ...

Robot 1, (x,y,a), ball seen, ...

Robot 2, (x,y,a), ball seen, ...

Robot 3, (x,y,a), ball seen, ...

Robot 4, (x,y,a), ball seen, ...

Pose estimation
using particle filter
into world (WCS)

Behavior /
Team strategy

Image
(ICS)

vision results

Image
(ICS)

vision results

Image
(ICS)

vision results

Image
(ICS)

vision results

2
0
1
3
4

Fig. 6. Creation of the worldmodel from own pose position process and the by receiving
broadcasts from teammates.

era transformations, inertial memory unit (IMU) filters and setting LEDs for
debugging purposes, that follow the same modular structure.

Fig. 7 shows the structure of the framework. For each motion thread cycle all
active modules modify the data on a blackboard upon being called in sequence by
a control shell (Runner), which also handles activation and deactivation of mod-
ules as well as the communication with the backend and the cognition/behavior
thread.

Testing individual modules is done by faking data on the blackboard and
running a single module. Alternatively the bodycontrol may run independently
from the rest of the framework. In this dummy frontend the whole cognition and
behavior thread is replaced with a network thread that listens to our bembelD-
bug network protocol and can pass arbitrary commands to the same thread safe
command queue the behavior would use from inside the JRLSoccer framework.

The modules are not interdependent on each other for compilation; they
only depend on the blackboard that needs to have the correct fields and has
no dependencies on it’s own. Logical dependencies are declared on registration
of the modules in a single file, where each module gets a human readable ID,
and optional dependencies and priorities are declared, determining the execution
sequence.

Compared to the standard dependency injection design pattern this design
omits the need for defining interfaces. It also differs from the classical black-
board approach, as its control shell has no knowledge of the data the modules
may modify. This puts more responsibility for module dependencies on the pro-
grammer, which is mitigated by the blackboard and the inclusion file giving an
complete overview over all modules, data and dependencies.

For the composition of motions we provide some utility functions. Inverse
kinematics of the lower body, stabilizing functions using the arms or legs, and
interpolation functions can be used to program the motions in a conceptual space
closer to how we would describe them as humans. Additionally most motions
have different phases or sections for which we adopt the well known finite state
machine concept. These concepts allow us to define states interpolating between
keyframes that are calculated with inverse kinematics. On motions such as a
stand up move we can check if a part of the motion succeeded and repeat parts

9

Shared
Memory

«provides sensors»
«needs actuators»

Behavior

«builds commands»
«needs stuff»

 «commands»

Queue

«synchronizes»
«uses mutex»

Runner

1. «fetch sensors»
2. «manage queue»
3. «run sequence»
4. «cognition msg.»
5. «push actuators»

Blackboard

«stores data»

Backend
= 10ms

Behavior Thread
> 30ms

Body Control Thread
< 10ms

«sensors»

«actuators»

Legend
Dataflow
Calls

 «cognition messages»

«fetch» «push»

(raw) sensor data

actuator data

Ringbuffer

«synchronizes»
«uses mutex»

Sequence

«knows execution order»
«knows active SubModules»

SubModule

readParameters()

«reads parameters»
«reads commands»

run()

«reads Blackboard»
«modifies BBoard»

«commands & parameters»
 «submodules to run»

 «submodule parameters»

«modifies»
«knows»

«runs»

«sequence mgmt»
«activation/deavtivation»

Fig. 7. Bodycontrol and Motion Framework.

as necessary. Through the return values of the states a motion may signal if it
is currently stable or in a critical section and should not be interrupted.

6 Whistle Detection

Our whistle detection uses the alsa library to access microphones on the Nao
robot. A Fast Fourier transformation is run on the acquired audio data using
the library fftw35. Once the data is detected in the frequency domain we check
whether the frequency where most of the signal lies is above 2000 Hz. As the
detection itself needs a lot of computational resources, the detection can be
enabled only in special game situations like the set state and is disabled in the
playing state.

Last year we published the whistle detection on our Bembelbots Github
page6. The release also includes a small debugger to test the whistle detection
on wav files.

7 Summary

Every year we, a team of mostly undergraduates, try to meet the challenges
introduced by the SPL. Based on our experience over the last years we are able
to maintain our unique JRLsoccer framework, described in Section 2. This is
only possible due to our activity at various competitions which give us a good
overview of our progress. Over the past year we made major changes to the

5 Fast fourier transformation, www.fftw.org/
6 Bembelbots whistle detection: github.com/Bembelbots/NaoWhistleDetection

www.fftw.org/
github.com/Bembelbots/NaoWhistleDetection

10

main components of our framework including: localization, vision, motion and
behavior.

Also, this year we applied for submission to the symposium in order to con-
tribute to the community. We are glad to participate at RoboCup 2017 in Japan
and hope to display the improvements that we have made.

References

1. Fürtig, Andreas, Holger Friedrich, and Rudolf Mester (2010): ”Robust Pixel Clas-
sification for RoboCup.” Farbworkshop Ilmenau

2. Becker, Christian (2013): Linienbasierte Featuredetektion und Positionstracking
durch Voronoi-Diagramme in einer symmetrischen Umgebung, Diploma thesis at
Goethe University, Frankfurt

3. Ditzel, Sina (2016): Selbstlokalisierung des Nao-Roboters im RoboCup mittels Par-
tikel Filter, Bachelor thesis at Goethe University, Frankfurt

4. Hess, Timm (2016): Training convolutional neural networks on virtual examples for
object classification in the RoboCup-environment, Bachelor thesis at Goehte Univer-
sity, Frankfurt

5. Brast, Jonathan Cyriax (2017): NAO Body Control and Motion Framework for
RoboCup, Bachelor thesis at Goethe University, Frankfurt

6. Zheltonozhskiy, E.: Tinydnn. https://github.com/tiny-dnn/tiny-dnn (2017). Ac-
cessed: 09.05.2017

7. Min Lin and Qiang Chen and Shuicheng Yan(2013): Network In Network, CoRR
8. Reinhardt, Thomas (2011): Kalibrierungsfreie Bildverarbeitungsalgorithmen zur

echtzeitfähigen Objekterkennung im Roboterfuball, Master thesis at Hochschule für
Technik, Wirtschaft und Kultur Leipzig

9. R. Douc and O. Cappe (2005): Comparison of resampling schemes for particle fil-
tering, ISPA 2005

	Team Description for RoboCup 2017

