
Embedded Tutorial:
Analog-/Mixed-Signal Verification Methods for AMS Coverage Analysis

Erich Barke4, Andreas Fürtig2, Georg Gläser3, Christoph Grimm5, Lars Hedrich2,
Stefan Heinen6, Eckhard Hennig8, Hyun-Sek Lukas Lee4, Wolfgang Nebel1,7,

Gregor Nitsche1, Markus Olbrich4, Carna Radojicic5, and Fabian Speicher6

1OFFIS, Institute for Information Technology, Germany
2Electronic Design Methodology, Dept. of Computer Science, Goethe-Universität Frankfurt a. M., Germany

3IMMS Institut für Mikroelektronik- und Mechatronik-Systeme gemeinnützige GmbH Ilmenau, Germany
4Institute of Microelectronic Systems, Leibniz Universität Hannover, Germany

5Design of Cyber-Physical Systems, Kaiserslautern University of Technology, Germany
6Chair of Integrated Analog Circuits, RWTH Aachen University, Germany

7Carl von Ossietzky University Oldenburg, Germany
8Reutlingen University, Germany

Abstract—Analog-/Mixed-Signal (AMS) design verification is
one of the most challenging and time consuming tasks of
todays complex system on chip (SoC) designs. In contrast
to digital system design, AMS designers have to deal with a
continuous state space of conservative quantities, highly nonlin-
ear relationships, non-functional influences, etc. enlarging the
number of possibly critical scenarios to infinity. In this special
session we demonstrate the verification of functional properties
using simulative and formal methods. We combine different
approaches including automated abstraction and refinement of
mixed-level models, state-space discretization as well as affine
arithmetic. To reach sufficient verification coverage with rea-
sonable time and effort, we use enhanced simulation schemes
to avoid conventional simulation drawbacks.

1. Introduction

Facing the complexity of modern SoCs, AMS design
verification is a prerequisite for a modern design flow to
prove the system’s functional behaviour and avoid design
bugs. Hence, to optimize time to market while ensuring
safety and quality of the design, measuring the verification
quality became crucial in deciding whether the regarded
system is sufficiently tested or verified.

Especially in the area of safety-critical design e.g. auto-
motive hardware and software applications coverage metrics
are commonly used to evaluate the amount of the already
invested verification effort. This is done by comparing the
number of analyzed verification or test scenarios with the
overall number of scenarios. Due to the finite and discrete
nature of digital systems the overall number can either be
obtained from the model of the design (Structural Coverage)
or from its specification (Functional Coverage). Opposed to

this, analog circuit designers are challenged by continuous
quantities and physical aspects of single blocks or devices.
In addition to functional properties, non-function effects like
crosstalk over supply or parasitic coupling have to be inves-
tigated in industrial size designs. Moreover, several levels
of abstraction have to be considered demanding methods
for system level as well as transistor level circuits. Digital
domain coverage metrics are not directly applicable to AMS
circuits and systems. Hence, industrial use-cases demand for
novel coverage-oriented modeling and verification strategies
to be investigated to tackle this challenge making the quality
of AMS verification measurable. Within the special session
we present methods and concepts to improve the AMS
verification process and to allow for the evaluation of the
coverage proposing different metrics.

In the next chapter, we present an approach to in-
tegrate uncertainties into system-level analog simulations
using affine arithmetic. To consider formerly not modelled
properties in available models, we propose a refinement and
efficient simulation scheme in the following section. The last
part of this contribution deals with formal checking of AMS
models based on state-space exploration and contracts.

2. Towards More Dependable Verification
Using Symbolic Simulation

A particular challenge in analog/mixed-signal verifica-
tion is a high sensitivity of analog parts to deviations in its
parameters and quantities. These deviations can be caused
by variations in a system environment or the design process
itself. They are of huge impact on system verification since
they can lead to violation of properties defined by system
specification. However, there is still a lack of methods,

which can provide dependable verification results in the
presence of these deviations.

Numerical simulation requires a high number of runs
to analyze a system behavior over wide sets of param-
eter values. Even then, the dependability still cannot be
guaranteed. On the other side, formal methods allow a
comprehensive verification. However, the scalability of these
methods with complexity and heterogeneity is a big ques-
tion. This part of the contribution will give an overview on
symbolic simulation. A literature survey provides a list of
methods, which uses a symbolic approach for mixed-signal
verification. However, all these methods require the use of
their own tools and translation of mixed-signal designs to
appropriate formal models.

In contrast to these methods, this tutorial will present
a methodology, which is much closer to current design
practice. The presented symbolic approach is integrated in
the existing simulator where scalar values are replaced by
symbolic ranges. In this way, comprehensive verification of
formal methods is combined with the general applicability of
simulation. Furthermore, using symbolic forms the proposed
methodology allows an easy tracking of the impact of each
deviation on the overall system behavior.

The proposed symbolic simulation verifies system be-
havior already on a high level of abstraction. A mixed-signal
system is modeled as a block diagram used in common
modeling languages such as Matlab/Simulink or SystemC-
AMS, Verilog, VHDL-AMS, etc..

Here, we use SystemC-AMS. Analog parts are modeled
by the SystemC-AMS extensions. Software is modeled by
embedding C++ code in SystemC modules.

For symbolic simulation we replace the basic C++ data
types double/int/bool by the new abstract data type XAAF.
The objective is to allow us the use of an existing, nu-
meric simulator for symbolic simulation. This permits an
easy integration of the methodology in the existing design
flow. This is possible through the steps summarized in
Figure 1. The proposed methodology will be demonstrated

Figure 1: Overall idea of XAAF-based symbolic simulation.

for a dual-path charge-pump PLL circuit, which is used to
generate a high quality signal for the local oscillators in a
IEEE 802.15.4 transceiver system. The virtual prototype of

the circuit in SystemC is provided by our project partner
RWTH University in Aachen.

2.1. Extended Affine Arithmetic XAAF

Affine Arithmetic (AA) [1] is a mathematical approach
introduced to overcome the divergence problem of Interval
Arithmetic [2]. The use of AA for symbolic simulation of
analog systems was firstly proposed by Grimm in 2004
[3]. A system behaviour is simulated over the ranges of
parameters represented in a symbolic way:

x̃ = x0 +
n

∑
i=1

xiεi εi ∈ [−1,1] (1)

Affine Arithmetic with the above form allows only compu-
tations with ranges in the continuous domain. However, this
is not enough for simulation of mixed-signal systems which
beside analog parts also contain digital parts and embedded
software. In order to allow computation with ranges on
the digital and software side, [4] proposes the extension of
Affine Arithmetic.

An extended Affine Arithmetic form x̂ is defined by:

x̂ = x0 +
m

∑
i=1

xiεi︸ ︷︷ ︸
x̃0

+
n

∑
k=1

ωk

(
x0k +

m

∑
i=1

xikεi

)
︸ ︷︷ ︸

x̃k

= x̃0 +
n

∑
k=1

ωkx̃k ωk ∈ {−1,1} . (2)

where x̃0 represents the center around which ωk split
ranges/polytopes represented by AAF. Analogous to AAF
where ε symbols represent ranges, ω symbols are used to
represent the sets of possible ranges/regions.

Computation with XAAFs. Computation with XAAFs is
allowed through overloading standard C++ arithmetic and
relational operators. Since the extended affine form repre-
sents the set of affine forms, all arithmetic operations defined
on affine forms [5] hold here.

Relational operators (>,<,≤,≥,==, ! =) are over-
loaded to allow comparison of ranges on the digital and
software side. Comparison with range-based quantities can
result in f alse, true but also in f alse and true, if the
compared ranges overlap.

Instrumentation of Control Flow Statements. The over-
loaded relational operators allow computation of condi-
tions in control flow statements whose conditional variables
are ranges. If a condition value is unknown ({false,
true}), both possible branches of a control flow should be
executed. This is not possible with the ‘default’ semantics
of conditional statements. In the following we show how
this issue can be solved by applying the following small
instrumentation rules on existing codes:

Rule 1 - Condition Rule This rule explains how the
condition part of C/C++ codes should be modified to handle
conditional variables as ranges. Using the XAAF approach

the result of a condition is not Boolean type (false or
true), but XAAF type which can also result in both
{false, true}. To check if the condition cond may
result in {false, true}, it should be checked if the
condition value is different than false. To do so the
condition part in regular C/C++ code should be modified
as following:

cond becomes cond! = false.

Rule 2 - Statement Rule The second rule explains
how the actions for the true condition value should be
modified to cover the case for which the condition results in
{false, true}. Let the statement values for the true
and false condition values be stm1 and stm2, respec-
tively. Hence, for cond=true the statement stm gets value
stm=stm1. However, applying Rule 1 the statement will
execute when cond=true but also when cond={false,
true}. To cover the second case, the statement should be
modified using Shannon’s expansion:

stm = stm1 becomes stm = cond∗ stm1+!cond∗ stm2

where the first part computes the statement for cond=true
and the second for cond=false. Note, that for
cond=true the statement gets only stm1 value
(!cond*stm2=0), as it should be.

In the XAAF library the set {false, true} is rep-
resented by XAAF:

0.5+ω0.5;ω ∈ {−1,1}

where ω =−1 represents the false and ω = 1 the true
condition value. Due to its symmetry, the implementation
of negation operator 0.5+ω0.5 only required to change the
sign of the value which scales ω . Thus, the negation operator
results in:

!(0.5+ω0.5) = 0.5−ω0.5;ω ∈ {−1,1} .

This explains why we chose ω to be {−1,1} instead of
{0,1}.

Example: There are various variants of control
flow statements: conditions such as (if, if-else
and if-else-if) and iterations such as (do while,
repeat until). Here we discuss the if-else-if con-
ditional statement. The others can be modified in a similar
way. Fig. 2 shows the modification of if-else-if apply-
ing Rules 1 and 2. Each branch should be executed only if
the corresponding conditions are true. Therefore, we need
to check if the conditions are not equal to false as defined
by Rule 1. The statements should update their value only
if the corresponding conditions are true. For the false
value of the conditions the statement value should stay the
same. Applying Rule 2 the condition value is then multiplied
with the new statement value and its negation with the old
value:

stm = cond1∗ (stm1)+!cond1∗ (stm)

The same holds also for the rest of the branches. Here, it
should also be noted that in the case the conditions result in

if (cond1)

{

 stm=stm1;

}

else if (cond2)

{

 stm=stm2;

}

if (cond1!=false)

{

 stm=cond1*stm1+!cond1*stm;

}

else if (cond2!=false)

{

 stm=cond2*stm2+!cond2*stm;

}

Figure 2: IF-ELSE-IF conditional statement with Boolean
conditions (left) and XAAF conditions (right).

Figure 3: The structure of PLL circuit.

true the conditional statement is the same as on the left
side.

2.2. Simulation Results of Transceiver PLL Circuit

The method is applied on a PLL circuit of one
IEEE 802.15.4 RF Transceiver. The structure of the circuit is
shown in Fig. 3. The SystemC virtual prototype of the circuit
was provided by our ANCONA project partner RWTH
University of Aachen.

The PLL design was simulated over the range of
initial node voltages of the loop filter (low-pass filter)
v0, v1, v2 ∈ [0.5,0.7]. The current variations of charge
pump and current generators in the correction block (see
Fig. 3) inside 10 % tolerance were also take into account.
The circuit was simulated for 100.000 time steps each equal
to 1/ fs, where fs is the sampling frequency equal to 20 GHz.
The reference frequency was 32 MHz and the N ratio was
110. Hence, the desired output frequency should have been
close to the value 3.52 GHz.

Fig. 4 shows the output frequency calculated for the
first 400 time steps. Black lines show the result of 20
behavior simulations computed for randomly values of node
voltages and current variations. Red lines show the worst
case behavior found by symbolic simulation. Note that the
red envelope encloses the behavior of random simulations.
The PLL design over the considered range of operating

Figure 4: PLL output frequency for the first 400 time steps.

conditions locked to 3.52 GHz with the tolerance of 0.1 %
after 36.000 time steps (corresponding to time 2 µs). The
circuit was simulated for additional 64.000 time steps and
the circuit stayed in the locked state. The total simulation
took 15 minutes. The number of possible transitions was
around 1.000 which were covered with 10 ω symbols. On
the other side, one random simulation run took only 2 s.
However, our approach is still competitive considering the
fact that thousands of random simulations are required to
obtain a sufficient coverage of a state space.

3. Identification of Critical Scenarios in AMS
Verification

The enormously increasing complexity of AMS systems
over the last years requires new design automation efforts
in several areas. One of the main challenges is to perform
the functional verification with respect to non-functional
properties, e.g. timing and power integrity. These effects
potentially decrease the system’s accuracy or even disturb
the overall functionality. Considering these effects makes
system analysis more and more complex. Hence, a system-
atic, coverage-based approach is needed to measure the qual-
ity of the executed verification. This work presents a novel
approach for identifying critical scenarios in AMS systems.
We combine automatic annotation of non-functional proper-
ties to behavioral models with accelerated piecewise-linear
analog simulations. On the basis of our abstract modeling
approach the simulation avoids time consuming numerical
integration, which speeds up system simulation. With this
method, the evaluation of more different scenarios is possi-
ble during the same amount of time. This allows to identify
the uncertain limits of system’s functionality more depend-
ably. Our framework supports the design of AMS systems
by showing the critical behavior and creating verification
scenarios to be verified throughout the design process. These

new use cases provide a base for defining a coverage-metric
to evaluate and increase the overall verification quality.

3.1. Finding System Acceptance Regions of AMS
Systems Influenced by Non-Functional Properties

Virtual prototyping of AMS systems for verification
became one of the major concerns in designing modern
ASICs. Non-functional effects such as noise and cross-talk
are often critical to the system’s performance [6]. Therefore,
their integration into the virtual prototype model is crucial
for the design and verification process. In this section, we
propose a methodology for determining system acceptance
regions considering non-functional effects.

To demonstrate the methodology, we examine a hys-
teretic current-mode buck converter circuit for driving
OLEDs shown in Figure 5 [7]. In this circuit, the output
current is controlled using two reference voltages and a
shuntresistor in order to sense the current flowing through
the attached load. This system can be influenced by several
non-functional effects possibly destabilizing the circuit, e.g.
reference voltages could be distorted by noise or crosstalk
aggression from supply or ground.

For verifying the stability, a SystemC-AMS [8] proto-
type is used. The purely analog components of the sys-
tems are modeled using a piecewise linear (PWL) scheme
described in Section 3.2. To integrate the aforementioned
non-functional effects in this prototype, the components
outside of the PWL simulation are automatically analyzed
and wrapped with additional blocks modeling the required
properties. The annotation and refinement process is shown
in Fig. 6. Since the effort of modeling every effect manually
is significant, the model components are refined automati-
cally. With the help of the libclang code analysis framework
[9], the structure and the schematic behavior of the circuit
can be extracted. The actual refinement is done by using this
information to generate a description of the non-functional
effect. This process is used to generate a specific wrapper
modeling the impact on the behavior of the component.
For some effects, it is necessary to connect this refined
component to additional signals modeling e.g. cross-talk
issues. This is so done by automatically adding new signals
and connections to the source-code and replacing the model
instance by a refined one in the hierarchy.

Based on these refined models, a parametric simulation
is executed to identify corner cases and parameter regions
with correct system behavior. These system acceptance
regions provide a basis for design decisions as well as
scenarios determining the critical non-functional property
model parameters of a device under verification.

3.2. Accelerated Mixed-Level Mixed-Signal
Simulator

An accelerated simulation of AMS circuits based on
piecewise-linear models has been presented in a previous
work [10]. Our simulation environment focuses on analog

Figure 5: Hysteretic current-mode buck converter for OLED
control.

Figure 6: Annotation and simulation process for exploration
of system acceptance regions.

subcircuits as shown in Figure 5. It provides a simulation
kernel for an accelerated simulation of the analog part.
Speedup is achieved by avoiding numerical integration and
directly using the linear time-domain solution of the system.
The time-domain solution is described by sums of exponen-
tial terms of the form (3), which can be efficiently evaluated
during simulation.

y(u, t) = y0 +
n

∑
i=1

ai(u) · eλit (3)

This approach requires piecewise-constant inputs (implicitly
given by the digital part of AMS circuits) and linear or at
least piecewise-linear models [11]. The models are gener-
ated by taking advantage of geometric methods (see Fig-
ure 7). The use of PWL device models results in the genera-
tion of multiple linear state-space circuit models describing
the analog circuit behavior. The possible combinations of
these piecewise-linear models result in a hybrid automaton
[12]. It is natural that exactly one state of the automaton
is valid at the same time. The modeling approach can be
applied to nonlinear semiconductor devices as well as to
nonlinear macro models like operational amplifiers, which

V
OLED

 (V)
0 2.5 5 7.5 10 12.5

I O
L

E
D

 (
A

)

0

0.1

0.2

0.3

0.4

(a) OLED model (5 sections).

40

U
DS

(V)
20

00U
GS

(V)
2

10

5

0
4

I D
S

(A
)

(b) N-channel MOSFET switch
(15 sections/triangles).

Figure 7: Abstract piecewise-linear behavioral models of
OLED and low-side switch S2.

makes a mixed-level simulation feasible. Approximating a
circuit by a hybrid system with linear continuous dynamics
has been used before, see e.g. [13], [14], [15]. It has been
proven to be an applicable method to control the complex-
ity of system-level modeling. Each state corresponds to a
discrete state-space representation of the form (4) and (5).

ẋ(t) = Avx(t)+Bvu(t) (4)
y(t) = Cvx(t)+Dvu(t). (5)

Switching Between State-Space Models. Switching be-
tween different PWL models is an important step for our
simulation methodology. The switch over time depends on
the threshold voltages and currents of nonlinear compo-
nents. Several root-finding algorithms for such functions are
known. We found that the Newton-Raphson method and
the bisection method yield unsatisfactory results, as they
often do not converge towards the first root and exhibit long
runtimes. A specialized root-finding algorithm for this task
has been presented in [16]. It guarantees to find the first root
in a given interval.

Numerical Integration

Linearization

Solving

Time Step

State-of-the-art Simulator

Model Selection

On-the-fly Model Generation
(if not yet in cache)

Evaluation of
Exponential Terms

Input or Model Change

Our Simulation Approach

Figure 8: State-of-the-art and our analog simulation flow.

Figure 8 shows a comparison of our simulation approach
with existing analog circuit simulators. Instead of perform-
ing numerical integration, linearization and solving the sys-
tem of equations during each time step, our approach is only
sensitive to input changes and internal model switching. A

model switch is triggered by a transition from one linear
section of a PWL component to another. The active linear
section, selected by the simulator kernel, remains valid as
long as no change of any input occurs and the circuit does
not exceed the current section due to its dynamics. In case
of an input change, a new valid section must be calculated
along with its new initial values to satisfy the continuity of
inductor currents and capacitor voltages. In contrast to an
input change, the dynamics of the circuit make switching to
an adjacent linear section necessary.

SystemC Interface. To analyze an AMS system, described
in Section 3.1, the accelerated simulation kernel is interfaced
to SystemC. The interface enables mixed-system simula-
tions, where SystemC serves as master simulator and as dig-
ital simulator. The interface consists of the modules shown
in Figure 9. As the structure of these modules depends on

Digital
MCU

&

≥1 O
ut

pu
tR

eg
is

te
rs

Analog
Circuit

+

Feedback

−

Figure 9: Mixed-signal circuit setup.

the components of the AMS system, we generate SystemC
wrapper modules automatically. For this purpose only a
description of the analog components and an XML file spec-
ifying input and output ports of the analog part are required.
The SystemC wrapper modules encapsulate the accelerated
simulation kernel as well as the hybrid automaton describing
the analog circuit behavior. The module offers a simulation
method which is invoked when input signals change or a
model transition is detected via the event feedback loop.
Thus, an event-driven simulation is feasible. Our previous
work shows, that a simulation speedup of factor 30 is
achievable [11]. The latter was compared to a reference
simulation setup using ModelSim and Saber.

3.3. Experimental Results

For experimentally evaluating our approach, the OLED
driving system shown in Figure 5 is used. In this system,
we annotate several non-functional properties to the analog
reference voltages Vref(L) and Vref(H).

In this contribution, we take the designer’s point of view
to find out acceptance region border values of the anno-
tated effects to be taken into account during the following
schematic design process. In a first step, abstract models
for the components are created. Since the buck converter

itself relies on conservative quantities, it has to be modeled
in an analog way using the described accelerated PWL
mixed-signal simulation scheme. Besides this analog model,
a checker module observing the simulation classifies correct
and incorrect behavior.

Before the actual simulation, the non-functional effects
are annotated automatically to the model components. In
order to cover the resulting non-functional parameter space,
the parameters swept over a predefined range. In the ob-
tained simulation results the correct and incorrect simula-
tion points are extracted to explore the influence of the
modifications and their interactions on the overall system
behavior. As an example result, Figure 10 shows the impact
of noise on Vref(L) and Vref(H). We observe, that both effects
cannot be treated separately since the figure shows a clear
interaction. Based on this method, the worst-case noise
variance values can be determined indicating an additional
check for system verification. A coverage metric describing
the amount of modeled effects could be defined using these
results. Moreover, advanced algorithms can be used to track
the system’s critical scenarios – i.e. the boundary between
passing and failing simulations – even more accurately by
adaptively adding additional points. In future work, we aim
at reducing the number of required simulations for identify-
ing the acceptance regions of a system in a multidimensional
parameter space.

Figure 10: Acceptance region for noise impact on Vref(L) and
Vref(H). Passed simulations are marked green, failed red.

4. AMS Leaf-Component Characterization
and Satisfaction Checking vs. Electronic
Circuit Schematics

The formal verification of AMS systems remains still a
demanding task and a main part of complexity comes from
the need to analyze and verify extra-functional properties,
such as timing or power consumption and from preventing
non-functional design faults, such as power cross-talk. To
check the correct implementation of such designs, sophis-
ticated designers and verification engineers are necessary.

To reduce the design flaws, we show an approach to ensure
extra-functional properties of AMS systems, using contract-
based design for refining the system to subsystems. Finally
we verify the contracts for the implementation of the refined
subsystems. Based on a discretization of their analog state
space, the implementation of the much smaller subsystems
can formally be checked for satisfying the contracts or
containing design flaws. Furthermore, the previously defined
contracts, can be checked by a systematic simulation, which
is controlled by a state-space based coverage analysis to
visit all states of the state space. If necessary, from that,
a bottom-up adaption of the leaf components’ contracts
becomes possible, which then can be used for the virtual
integration. As a result, a more reliable verification of the
system level contracts becomes possible.

4.1. Contract Based Specification and Verification

For digital systems the formal description and refinement
of functional specifications using contract and component
based design (CBD) is a well-developed approach [17],
[18]. Differently, for extra-functional and AMS properties
the compositionality issues prohibit its direct application
without further constraints [19], [20]. To continue our work
in [19], [20] we now implemented the bottom-up char-
acterization of extra-functional or AMS properties using
the components’ transistor level SPICE netlists. Based on
the resulting discrete analog transition systems (DATS) the
satisfaction of the contracts can be verified for the leaf com-
ponents – i.e. components of the lowest level of refinement.
In the result, we connect the contract based process of virtual
integration and refinement checking to the detailed electrical
design and characterization of the leaf components.

Contract and Component Based Design (CBD). Follow-
ing the top-down CBD approach we consider the system M
as well as the components Mi ∈ M∗M of its decomposition
DM = (M∗M,NM) into subcomponents Mi and interconnec-
tions ni ∈ NM as components M resp. Mi

1 , defined by:
M,Mi = (tp(M),χM,SM,DM,BM) with:

• tp(M) is the component’s type name
• χM = XM ∪YM is the component’s port interface
• SM =

⋃
i∈NCi is the component’s set of contracts Ci

• DM = (M∗M,NM) is the component’s decomposition
• BM is the component’s implementation as a DATS

Assuming the behavior and the communication of the
components to be compositional for some constraints, the
component denotes a design element which internally en-
capsulates its behavior, restricting its interaction with its
environment to solely its well-defined, directed port inter-
face χM = XM ∪YM , consisting of input ports xi ∈ XM and
output ports yi ∈ YM . Based on this interface, the contracts
CM,i := (AM,i,GM,i) of a component M declare guarantees

1. Not meaning identity, we repeatedly use i for multiple indices i ∈ N.
To provide detailed relations between indices, we additionally use j and k
and explicitly formulate their relations.

GM,i which are promised to hold at the output ports, as
the component’s environment satisfies the corresponding
assumptions AM,i of CM,i at the input ports.

Specifying assumptions and guarantees in the extended
linear time logic OTHELLO (Object Temporal with Hy-
brid Expressions Linear-Time LOgic) [21], assumptions
A and guarantees G can intuitively be interpreted as the
sets [[A]] =

⋃
i Si(A), [[G]] =

⋃
i Si(G) of hybrid trace sets

Si(A) =
⋃

j∈|X | s(x j) resp. Si(G) =
⋃

j∈|Y | s(y j) which for
all their hybrid traces s(x j) = {(v0(x j),T0), . . . ,(vk(x j),Tk)}
resp. s(y j) = {(v0(y j),T0), . . . ,(vk(y j),Tk)}, with T0 = 0,
k≤∞, Ti ∈ {[tk, tk] = tk,(tk, tk+1)}, hold the assumption resp.
guarantee for all of the traces timed values (vk(x j),Tk) resp.
(vk(y j),Tk) at any time ti ∈ R.

System:	M
Input
Interface
XM Contract	Based	

Specification
SM=	∪iCM,i

y0x0

Output
Interface

YM

Refinement	
Checking

Structural
Decomposition	and

Specification	Refinement

Decomposition:	DM

y0x0

Component:	M0

y0x0

Contract	Based	
Specification
SM0=	∪iCM0,i

n0
n3n1

Component:	M1

y0x0

Contract	Based	
Specification
SM1=	∪iCM1,i

Input
Interface
XM1

Output
Interface

YM1

Compatibility	Checking

Implementation	B1
x0 y0Z = {zi}

DATS

ImplementationSatisfaction
Checking

Implementation	B0
x0 y0Z = {zi}

DATS

Implementation Satisfaction
Checking

Input
Interface
XM

Output
Interface

YM
Input
Interface
XM0

Output
Interface

YM0

Figure 11: General concepts of contract based design.

Refining the specification SM of a component M by a
decomposition structure DM and specifying the subcompo-
nents Mi ∈M∗M by specifications SMi , CBD allows to derive
and verify the composed system behavior S∗M of the subcom-
ponents’ virtual integration by systematically integrating the
contracts CMi ∈ SMi of all subcomponents Mi ∈ M∗M and
formally comparing the resulting S∗M with the contracts of
the system specification SM . Figure 11 outlines this pro-
cesses of system decomposition and specification refinement
as well as checking the virtual integration by refinement
checking, compatibility checking and satisfaction checking.
While refinement checking verifies if the virtual integra-
tion SM∗ holds the initial specification SM , compatibility
checking verifies, if for all interconnections ni = (psrc, psnk),
psrc ∈XM∪

⋃
Mi∈M∗M

YMi , psnk ∈YM∪
⋃

Mi∈M∗M
XMi , ni ∈NM the

traces guaranteed for the net’s source port psrc are acceptable
traces for the assumptions concerning the sink port psnk. To
specify the components’ interfaces and contracts as well as
to specify and to verify the component compatibility and
refinement relations, we use the OCRA System Specification
language OSS of OCRA (OTHELLO Contract Refinement
Analysis) [22]. Finally, for the leaf components of the

refinement the satisfaction checking denotes the verifica-
tion, if all execution paths of the component’s behavioral
implementation BM satisfies the contract based specification
SM , meaning that for all execution paths the appropriate
guarantees GM,i hold, if the corresponding assumptions AM,i
are satisfied by the environment.

4.2. Extra-Functional and AMS Contracts

To apply contract based design for extra-functional and
AMS properties, we use virtual ports for the node volt-
ages (V) and branch currents (I) at the electrical ports.
However, owed to their conservative nature, the AMS and
extra-functional properties like timing or power consump-
tion are not generally compositional for these ports. As
a consequence, these properties can be guaranteed only
with tolerance margins and with additional constraints for
their environment. Hence, to apply contract based design
we suggest to extend the components and contracts for
specifying constraints for the wiring szenario, meaning to
provide guarantees concerning its input impedance as well
as assumptions for its acceptable load impedances. To relate
these wiring information with the schematic and to verify
their compatibility based on contracts, we use structural
contracts [20]. With structural contracts we explicitly define
the interconnection rules for the components’ virtual ports
according to a given tailoring of the component models.

CM0,i: AM0,i: (vnout.cSnk	=	inout.cSnk)	
(vnout.pSnk	=	'vnin')
(inout.pSnk	=	'inin')
(cnout.cSnk	=	vnout.cSnk)
(cnout.pSnk	=	'cnin')	...

∧
∧
∧
∧

GM0,i: (true)

Contract	Based	
Specification
SM1=	∪iCM1,i

inout

vnout

ivdd
vvdd
vnin
vvss
cnout
rnout

Component:
M1

Contract	Based	
Specification
SM0=	∪iCM0,i

inout

vnout

ivdd
vvdd
vnin
vvss
cnout
rnout

Component:
M0

System:	M

Contract	Based	
Specification
SM=	∪iCM,i inout

vnout

ivdd
vvdd
vnin
vvss
cnout
rnout

ni
xi

Mk

xi_cSrc
xi_pSrcyi

Mj

yi_cSnk
yi_pSnk

DM

introspect

xi_cSrc
xi_pSrc

yi_cSnk
yi_pSnk

Figure 12: Outline of structural contracts to add constraints
for the interconnection of virtual ports.

Application example. Figure 12 outlines a simple example,
drafting a system interface M and the interfaces M j, Mk of
the refining subcomponents. For each of their ports xi ∈ XMi ,
yi ∈ YMi two structural ports xi.cSrc, xi.pSrc resp. yi.cSnk,
yi.pSnk are inserted as depicted on th upper left. Connecting
these ports to an additional introspection component, the
information of exemplary interconnection ni =(M j.yi,Mk.xi)
is reflected to the components, and their structural contracts
– one drafted at bottom right – can be verified.

As a simple example, we specify contracts for the
functional, extra-functional and AMS properties of a small
PWM output driver circuit according to Fig. 13. The actual
implementation is illustrated in Figure 14 which consists of
two inverter circuits with different parameters to meet the
different contracts mentioned before.

V
C/C

[V
]

V(vdd)

V
m

in
(v

dd
)

V
m

ax
(v

dd
)

V
W

P
(v

dd
)

V(nin)

V
m

in
(n

in
)

V
m

ax
(n

in
)

V
L(

ni
n)

V
H
(n

in
)

V(nout)

V
m

in
(n

ou
t)

V
m

ax
(n

ou
t)

V
L(

no
ut

)
V

H
(n

ou
t)

V(vss)

V
m

in
(v

ss
)

V
m

ax
(v

ss
)

V
W

P
(v

ss
)

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

tC/C[ps]
0.0 150.0

V
C/C

[V
] 1.5

1.0

0.5

0.0

-0.5

0.0

tdL(nout)

tf(nout)

tdH(nout)

tC/C[ps]
0.0 150.0

V
C/C

[V
] 1.5

1.0

0.5

0.0

-0.5

0.0

tr(nout)

CoutC/C[fF]C C[85C,C95]C

RoutC/C[Ω]C C[495C,C505]C

Figure 13: Exemplary specifications for a simple PWM
output driver circuit.

noutnin

Vdd

Vss

Vss

Vss

Vdd

Vdd

B0

 B1

Figure 14: Implementation of the Decomposition DM , using
two inverter circuits with different parameters (see Tab. 1).

For satisfaction checking, we characterize the compo-
nent based on its transistor level design and discretize its
electrical behavior into a discrete analog transition system.

4.3. Satisfaction Checking: State-Space Coverage

To reduce the complexity of the full continuous state
space of an analog circuit, we create a discrete model of
the actual implementation. Starting with a netlist description
of a subsystem, the underlying DAE (Differential Algebraic
Equation) system of the circuit is solved. The resulting high
dimensional state space is discretized using an electrical
circuit simulator with full SPICE accuracy [23]. The full
process is well described in [24].

+

noutnin

V(nin)

V
(n
o
u
t)

Figure 15: Simple inverter circuit (left) and the resulting
DATS System (right).

With these method we can construct a discrete state-
space model DAT S:

Definition 1. Discrete Analog Transition System (DATS)
For the DATS we define a four-tuple MAT S = (Σ,R,LV ,T)
where

• Σ is a finite set of states of the system.
• R ⊆ Σ× Σ is a total transition relation, hence for

every state σ ∈ Σ there exists a state σ ′ such that
(σ ,σ ′) ∈ R.

• LV : Σ→Rnd is a labeling function that labels each
state with the vector of nd variables containing the
values of the state space variables and the inputs of
the DAE system.

• T : R→ R+
0 is a labeling function that labels each

transition from σ to σ ′ with a real valued positive or
zero transition time that represents the time required
for the trajectory in the state space between these
states.

Figure 15 shows the results of the discretization of a
simple inverter circuit.

Once the DATS is calculated model-checking techniques
can be applied to the discrete model of the analog system.
Using the Analog Specification Language (ASL) [25] sim-
ple property specifications can be verified. Additionally, a
reachability analysis reduces the number of states inside
the DATS, resulting in the set of states ΣR. As seen in
Def. 1, timing information T are available on each edge
and information about the states are stored inside the DATS
during the discretization process. Besides all node voltages
also currents in every state are stored as well, allowing us
to define and verify power properties.

Figure 16: Coverage calculation for a transient simulation
response (red) which marks a set of states inside the DATS
as covered (black).

In addition to the model-checking approach, another
way to ensure the implementation itself is to simulate the
actual implementation. Typically, a designer creates tests to
ensure the correct behavior of the implementation. For this,
a set of input stimuli is created and afterwards simulated.
To measure the quality of this set of stimuli, we introduce
an analog state space coverage ζ which maps a transient
simulation response with |C| data points to the DATS:

ζ =
|C|
|ΣR|

(6)

The calculation of an analog state-space coverage is shown
in Figure 16. The trajectory (red crosses) through the DATS
(yellow boxes) is the result of a simulation of a given input
stimuli. A state is covered by that trajectory, if its Euclidean
distance is under a given threshold. While full coverage
(ζ = 1.0) implies a complete tested design, the analog
coverage metric can be also used to guide the designer to
regions of the DATS which is not tested so far, reducing the
number of possible design flaws and a faulty implementa-
tion. This method ensures that an implementation meets the
specifications in any case.

Satisfaction Checking Results. The presented methods are
applied to our application example. First, we created a
testbench with the requested specifications (like Cload and
Rload, supply voltage, etc.) and created the DATS for the
second inverter B1. Using ASL we’re able to prove some
characteristics of the circuit like power consumption Pswitch
during switching behavior and transition times Tmax through
the discrete state space. The following listing shows an
ASL statement for checking the maximum value Tmax on
all transitions while switching the input of the inverter from
a low to a high input signal.

in_up = Reach and nin[>1.4] and nout[<0.6];
in_down = Reach and nin[<0.6] and nout[>1.4];

numvar %max_time;
on Reach assign(%max_time, max)

transition from in_up to in_down;

As seen in Table 1, all values for this component meet
the specifications. The other inverter circuit B0 is verified
with the given contracts and specifications in the same way
as described before. Using the analog state-space coverage
method a set of stimuli are generated automatically to ensure
the required specifications are met.

Table 1: Characteristics of the applied analog transistor level
circuits

Inverter B0 Inverter B1
PMOS p0, w 4.5×10−6 m PMOS p1, w 9×10−6 m
PMOS p0, l 180×10−9 m PMOS p1, l 180×10−9 m
NMOS n0, w 2.0×10−6 m NMOS n1, w 4.0×10−6 m
NMOS n0, l 180×10−9 m NMOS n1, l 180×10−9 m
Wswitch 11.7×10−12 J Wswitch 28.9×10−12 J
Tmax 37.6×10−12 s Tmax 86.1×10−12 s
Cload 23.0×10−15 F Cload 92.0×10−15 F
Rload 200 Ω Rload 500 Ω

T T Llow 0.0 V to 0.6 V
T T Lhigh 1.4 V to 2.0 V

5. Conclusion

This article summarizes novel methods and approaches
for the verification of AMS designs from a coverage-
oriented perspective.

We presented an approach allowing the mostly seamless
integration of formal methods (symbolic simulation) into

an existing numerical simulator. Operator overloading and
a few lines of code instrumentation are sufficient for inter-
facing to the conventional tool. Simulation of an industrial
PLL design shows that the methodology can be successfully
used with complex AMS designs. Automatic model trans-
formation using property annotation and piecewise-linear
modeling shows a way for verifying the influence of non-
functional effects to the system behaviour. We demonstrated
a methodology to identify system acceptance regions as well
as critical points in the AMS system behaviour. Finally, we
outlined our work on applying contract based design to the
specification and verification of extra-functional and AMS
properties. Using discrete analog transition systems, we
derive a formal component characterization of the transistor
level circuit, which is used for satisfaction checking the
contracts.

The presented work aims at improving the speed and
extending the scope of the AMS verification process. It
builds the base for our ongoing work on coverage analysis
in complex AMS systems.

Acknowledgments

The authors gratefully acknowledge partial financial sup-
port by the project ANCONA by the Federal Ministry of
Education and Research (BMBF) under the grant number
IKT 2020 16ES021.

References

[1] M. Andrade, J. Comba, and J. Stolfi, “Affine Arithmetic (Extended
Abstract),” Interval ’94, St.Petersburg, Russia, 1994.

[2] R. E. Moore, Interval Analysis. Eaglewood Cliffs, NJ: Prentice-Hall,
1966.

[3] C. Grimm, W. Heupke, and K. Waldschmidt, “Refinement of mixed-
signals systems with affine arithmetic,” in Design, Automation and
Test in Europe, pp. 372–377, IEEE Comput. Soc, 2004.

[4] C. Radojicic, T. Purusothaman, and C. Grimm, “Symbolic Simula-
tion of Mixed-Signal Systems with Extended Affine Arithmetic,” in
Proceedings of EDAWORKSHOP 2015, pp. 21–26, 2015.

[5] J. Stolfi and L. de Figueriedo, “An introduction to affine arithmetic,”
TEMA Trend. Mat. Apl. Comput., vol. 4, pp. 297–312, 2003.

[6] M. Alassir, J. Denoulet, O. Romain, and P. Garda, “Signal integrity-
aware virtual prototyping of field bus-based embedded systems,”
IEEE Transactions on Components, Packaging and Manufacturing
Technology, vol. 3, no. 12, pp. 2081–2091, 2013.

[7] K.-H. Kim, B.-S. Kong, and Y.-H. Jun, “Adaptive frequency-
controlled ultra-fast hysteretic buck converter for portable devices,” in
SoC Design Conference (ISOCC), 2012 International, pp. 5–8, Nov
2012.

[8] M. Barnasconi and C. Grimm, eds., SystemC AMS extension User’s
Guide. OSCI, 2010.

[9] clang: a C language family frontend for LLVM.

[10] S. Hoelldampf, D. Zaum, M. Olbrich, and E. Barke, “Using analog
circuit behavior to generate SystemC events for an acceleration
of mixed-signal simulation,” in IEEE International Conference on
Computer Design (ICCD), pp. 108–112, Oct. 2011.

[11] S. Hoelldampf, H. L. Lee, D. Zaum, M. Olbrich, and E. Barke,
“Efficient generation of analog circuit models for accelerated mixed-
signal simulation,” in IEEE International SOC Conference (SOCC),
pp. 104–109, Sept. 2012.

[12] H.-S. L. Lee, M. Althoff, S. Hoelldampf, M. Olbrich, and E. Barke,
“Automated generation of hybrid system models for reachability anal-
ysis of nonlinear analog circuits,” in Design Automation Conference
(ASP-DAC), 2015 20th Asia and South Pacific, pp. 725–730, IEEE,
2015.

[13] L. O. Chua and A.-C. Deng, “Canonical piecewise-linear modeling,”
vol. 33, no. 5, pp. 511–525, 1986.

[14] W.-K. Chen, ed., Feedback, nonlinear, and distributed circuits. CRC
Press/Taylor & Francis, 3rd ed., 2009.

[15] Y. Zhang, S. Sankaranarayanan, and F. Somenzi, “Piecewise linear
modeling of nonlinear devices for formal verification of analog
circuits,” in Formal Methods in Computer-Aided Design (FMCAD),
2012, pp. 196–203, Oct. 2012.

[16] D. Zaum, S. Hoelldampf, M. Olbrich, E. Barke, and I. Neumann, “An
accelerated mixed-signal simulation kernel for systemc,” in Specifica-
tion Design Languages (FDL 2010), 2010 Forum on, pp. 1 –6, sept.
2010.

[17] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger,
and K. Larsen, “Contracts for systems design,” Technical Report RR-
8147, Research Centre Rennes Bretagne Atlantique, Rennes Cedex,
2012.

[18] E. A. Lee and A. L. Sangiovanni-Vincentelli, “Component-based
design for the future,” in Design, Automation & Test in Europe
(DATE), 2011.

[19] G. Nitsche and K. Grüttner, “Ams–/ef–contracts – a proposal of
contracts for ams–verification and ams–coverage–analysis,” in Pro-
ceedings of the 2015 Forum on Specification and Design Languages,
FDL 2015, Barcelona, Spain September 14–16, 2015, 2015.

[20] G. Nitsche, R. Görgen, K. Grüttner, and W. Nebel, “Structural con-
tracts – motivating contracts to ensure extra–functional semantics,”
in In Proceedings of the fifth IFIP International Embedded Systems
Symposium (IESS 2015), 2015.

[21] A. Cimatti, M. Roveri, A. Susi, and S. Tonetta, “Validation of require-
ments for hybrid systems: A formal approach,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 21, no. 4,
2012.

[22] A. Cimatti, M. Dorigatti, and S. Tonetta, “Ocra: A tool for checking
the refinement of temporal contracts,” in 28th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), 2013.

[23] A. T. Davis, “An overview of algorithms in gnucap,” in University/-
Government/Industry Microelectronics Symp., pp. 360–361, 2003.

[24] S. Steinhorst and L. Hedrich, “Trajectory-directed discrete state space
modeling for formal verification of nonlinear analog circuits,” in Pro-
ceedings of the International Conference on Computer-Aided Design,
pp. 202–209, ACM, 2012.

[25] S. Steinhorst and L. Hedrich, “Model checking of analog systems
using an analog specification language,” in Proc. Design, Automation
and Test in Europe DATE ’08, pp. 324–329, 10–14 March 2008.

